
Using Conquest on LINUX – version 1.4.19b Oct 12, 2017

The server core (dgate.exe = dgate under Linux) compiles and runs on Linux systems and Solaris. I
develop primarily under Windows, but currently I test the code and scripts under Linux Ubuntu 16.04
in a virtual machine. I also had the server compiled on a Raspberry Pi but without a lot of the extras.

The Linux release of the server core works default with SqLite driver built in into the server (no
ODBC). The DbaseIII driver is also supported. Piotr Filipczuk has added a PostGresQL driver. The
native MySQL interface also can be used. The graphical user interface has not been ported to Linux,
but the WEB interface is provided. In this version, most options have been well tested – it is a stable
release.

To use the server, one needs a valid version of the configuration files and put them in the same
directory as the dgate executable. The easiest way to do this is to unpack dicomserver1419b.zip with
“unzip dicomserver1419b”.

INSTALLATION

Prerequisites: 1) a running Linux system. 2) sudo installed and enough rights to perform sudo. If not,
the script will not be able to install the server as web service for apache and you need to copy the files
by hand.

These packages needed to be installed in a plain Linux system (e.g. Mint or Ubuntu) for a release using
SQLite or DbaseIII:

sudo apt-get update
sudo apt-get install g++
sudo apt-get install apache2
sudo a2enmod cgi
sudo service apache2 restart

For Fedura, the following packages were recommended:

dnf install gcc-c++-sh-linux-gnu.x86_64 gcc-c++-x86_64-linux-gnu.x86_64 clang.x86_64

The installation can be performed manually, or by a web based method, explained below. The
following steps illustrate a minimal installation:

(ps)ftp the zip file to linux system (e.g., into your home directory) get the files there
mkdir conquest
cd conquest to there
unzip ../dicomserver1419.zip unpack all files
chmod 777 maklinux

./maklinux compile and install web access
choose option 3 SqLite

dgate -v -r regenerate the database

dgate -v & run the server (for ever)

Now the server should be running and localhost/cgi-bin/dgate should provide a working web interface.

To install with Postgres as database, these commands are needed to install and setup Postgres:

sudo apt-get install libpq-dev Postgres development tools
sudo apt-get install postgresql Postgres database
sudo su become superuser
su – postgres become postgres user
psql set the passwork to postgres
\password
postgres
postgres
\q
createdb conquest create database conquest
exit
exit

./maklinux compile and install web access
choose option 2 Postgres

The build process always often a few error messages that can be ignored:

/usr/bin/install: cannot create regular file '/usr/local/man/man1/cjpeg.1': No such file or directory
Makefile:200: recipe for target 'install' failed
mkdir: cannot create directory ‘data/dbase’: File exists

During database creation (dgate -v -r) there can be error messages about non-existing databases, e.g. for
postgress:

osboxes@osboxes:~/Desktop/distribution$./dgate -v -r
Regen Database
Step 1: Re-intialize SQL Tables
*** ERROR: relation "dicomworklist" does not exist
LINE 1: SELECT DICOMWorkList.PatientID FROM DICOMWorkList
 ^
Dropping Existing tables (if-any)
Worklist is empty
Dropping worklist
*** ERROR: table "dicomworklist" does not exist
***Failed PGSQLExec : DROP TABLE DICOMWorkList
….

***Error: ERROR: table "uidmods" does not exist

WorkList Database
Patient Database
Study Database
Series Database
Image Database
Step 2: Load / Add DICOM Object files
Regen Device 'MAG0'
[Regen] ./data/0009703828/1.3.46.670589.5.2.10.2156913941.892665339.860724_0001_002000_14579035620000.dcm
-SUCCESS
[Regen] ./data/0009703828/1.3.46.670589.5.2.10.2156913941.892665339.860724_0001_003000_14579035620001.dcm -SUCCESS
Regeneration Complete
osboxes@osboxes:~/Desktop/distribution$./dgate -v
DGATE (1.4.19, build Tue Nov 22 20:34:32 2016, bits 64) is running as threaded server
Database type: native PostGres connection

Conquest in action on Ubuntu16.04, with web interface
Web based installation
To run the web based installer go to folder dicomserver/install are run:

chmod 777 install.sh
./install.sh

This compiles a minimal dgatesmall that is run as service control manager and opens web page
http://127.0.0.1/cgi-bin/service/dgate. The resulting web page allows and guides the user through
compilation, configuration, re-generation of the database if need, and starting the server, setting up the
web server and opening the web server. A screen-shot of the install page (windows version, compile
links are missing) is shown below:

Feedback on this new installation method would be appreciated. After installation, the server runs as
part of the control manager. To make it run permanently, stop the server control manager (dgatesmall),
and use the start-stop-daemon method described below. Note that stopping the server using this web
page on Linux disables restarting it for a minute or so (due to an IP port being blocked). Be patient
when it fails not restart and try again after a while.

ZerobraneStudio IDE

To install and use ZeroBrane Studio with the conquest DICOM server under Linux, take these steps.
First download ZeroBraneStudioEduPack-xxx-linux.sh. Then in a command prompt run:

chmod 777 ZeroBraneStudioEduPack-xxx-linux.sh
sudo ./ZeroBraneStudioEduPack-xxx-linux.sh

After installation is done run ZeroBrane Studio from the command prompt as “sudo zbstudio” and run
the install script /dicomserver/ZeroBraneStudio/install.lua in ZeroBrane Studio as described in this file.
After running the conquest install script as root, ZeroBraneStudio can be run as a normal user.

http://127.0.0.1/cgi-bin/service/dgate

Integration with Zerobrane studio

CONFIGURATION

Configuration files under Windows and Linux are the same except for the use of a forward slash
instead of back slash in directory paths. The following essential entries are therefore different for Linux
(these are the defaults):

SQLServer = ./data/dbase/conquest.db3
MAGDevice0 = ./data/

See the Windows manual for more details about the configuration files (you need at least to edit
acrnema.map to define DICOM systems that will be retrieving information from your server). All
configurations options in dicom.ini (e.g., for DICOM routing) are listed in windowsmanual.pdf. You
probably also need to edit the web server configuration file /usr/lib/cgi-bin/dicom.ini to set the correct
IP address of the machine. If not the web server will only partly function.

After copying the files, if needed, regenerate the database with “conquest/dgate –v –r” then run the server
with “conquest/dgate –v &” or “conquest/dgate -^serverstatus.log”. NOTE: regeneration is only needed after an
upgrade if dicom.sql is updated. If you want to avoid regeneration do NOT replace dicom.sql

To automatically start the server at boot time create a shell script in /etc/rc5.d called Z99Conquest, that
contains, e.g.,:

cd /home/marcel/conquest
dgate -^serverstatus.log

The building process for the server was tested with gcc 3.3.5, Ubuntu 8.10 and on Solaris 10. Both 32
and 64 bit OS's are supported. Warnings (many ‘multi-character character constant’ and one ‘fattach is
not implemented and will always fail’) are produced but these do not impact server operation.

Also MySQL support is provided. It requires creating a DB called "conquest" with phpmyadmin and
installing libmysqlclientdev with: “apt-get install libmysqlclient-dev” before running maklinux_mysql.
These are the settings in dicom.ini for MySQL:

SQLHost = localhost
SQLServer = conquest
Username = root
Password =
Mysql = 1
DoubleBackSlashToDB = 1

The PostGres system can be setup to the defaults, and a database named ‘conquest’ made. For postgres
to work you need to check some values in dicom.ini (using the default postgres account assuming
password postgres, note that parameter ‘SQLServer’ sets the database to conquest). A copy from
dicom.ini.postgres to dicom.ini would set the following values:

SQLHost = localhost
SQLServer = conquest
Username = postgres
Password = postgres
PostGres = 1
DoubleBackSlashToDB = 1
UseEscapeStringConstants = 1

It is advised to use a normalized database (as defined in dicom.sql) for postgres operation, e.g., by
copying dicom.sql.postgres to dicom.sql and a denormalized database for DbaseIII, e.g., by copying
dicom.sql.dbase to dicom.sql . The following are donated scripts by Mark Pearson for start/stop and
rotating logfiles:

To install this script (it is in the distribution as nconquest-pacs.sh) do:

sudo cp nconquest-pacs.sh /etc/init.d/
sudo chmod 755 /etc/init.d/nconquest-pacs.sh
sudo apt-get install authbind
sudo /etc/init.d/nconquest-pacs.sh start

#!/bin/bash

conquest-pacs.sh SysV init script for Conquest PACS.

Written by Miquel van Smoorenburg <miquels>.
Modified for Debian GNU/Linux by Ian Murdock <imurdock>.
Customized for Conquest by Mark Pearson <markp>

HOME and PACSUSER should be the only variables that may need to be
modified.

PATH=/sbin:/bin:/usr/sbin:/usr/bin

Modify HOME to suit your environment.

HOME=/usr/local/conquest
This is the user to run as. Modify it if you don't use username conquest.
PACSUSER=conquest

DAEMON=$HOME/dgate
INI=$HOME/dicom.ini
NAME=conquest_pacs.sh

All defaults here will be overridden by values from $HOME/dicom.ini
STATUSLOG=$HOME/serverstatus.log
PORT=104
DESC="Conquest PACS Server"

STOPPACS=$HOME"/dgate --quit:"
STARTAS=$DAEMON

test -f $DAEMON || echo "Cannot find $DAEMON" exit 0
test -f $INI || echo "Cannot find $INI" exit 0

set -e

if grep "TCPPort" $INI > /dev/null ; then
 PORT=`egrep -i '^*TCPPort *= ' $INI | sed 's/\r//' | awk '{ print $3}'`
fi

if [$PORT -le 1024]; then
 test -f /usr/bin/authbind || echo "authbind is needed for access to ports <
1024" exit 0
 STARTAS="/usr/bin/authbind "
fi

if grep -is "^ *StatusLog" $INI > /dev/null ; then
 STATUSLOG=`egrep -i '^*StatusLog' $INI | sed 's/\r//' | awk '{ print
$3}'`
fi

PIDFILE=/var/run/$NAME.$PORT.pid
if [$STARTAS = $DAEMON]; then
 ARGS=" -^$STATUSLOG"
else
 ARGS="$DAEMON -^$STATUSLOG"
fi

case "$1" in
 start)
 if [-f $HOME/disable_autostart]; then
 echo "Not starting $DESC: disabled via $HOME/disable_autostart"
 exit 0
 fi

 echo -n "Starting $DESC: "
 start-stop-daemon --start --quiet --pidfile $PIDFILE \
 --chuid $PACSUSER --chdir $HOME --exec $DAEMON \
 --startas $STARTAS --background -- $ARGS
 echo "$NAME."
 ;;
 stop)

 echo -n "Stopping $DESC: "
 cd $HOME
 $STOPPACS

 start-stop-daemon --oknodo --stop --quiet --pidfile $PIDFILE \
 --exec $DAEMON -- $ARGS
 echo "$NAME."
 echo
 ;;

 restart|force-reload)
 echo -n "Restarting $DESC: "
 start-stop-daemon --stop --oknodo --quiet --pidfile $PIDFILE \
 --exec $DAEMON -- $ARGS
 sleep 1
 start-stop-daemon --start --quiet --pidfile $PIDFILE \
 --chuid conquest --chdir $HOME --exec $DAEMON -- $ARGS
 echo "$NAME."
 ;;
 *)
 N=/etc/init.d/$NAME
 echo "Usage: $N {start|stop|restart|force-reload}" >&2
 exit 1
 ;;
esac

exit 0

For security reasons I have added a user "conquest" and the package authbind to allow access to
priveleged ports. I added the following entries to dicom.ini:
HomeDir = /usr/local/conquest
StatusLog = /var/log/conquest/NMPACS.serverstatus.log
TroubleLog = /var/log/conquest/NMPACS.PacsTrouble.log

The file /etc/cron.weekly/conquest_rotate does weekly log rotation for me.

#!/bin/bash

conquest_rotate Cron script to rotate conquest log files.
Keep files for 365 days
Read filenames from dicom.ini

Written by Mark Pearson 20070711 <markp>.

Modify this line to suit your environment
HOMES=(/usr/local/conquest /usr/local/conquest-icon)
for i in ${HOMES[@]}; do

 INI=${i}/dicom.ini
 STATUSLOG=${i}/serverstatus.log
 TROUBLELOG=${i}/PacsTrouble.log

 set -e

defaults will be overridden by values from ${i}/dicom.ini
 if grep -is "^ *StatusLog" $INI > /dev/null ; then
 STATUSLOG=`egrep -i '^*StatusLog' $INI | sed 's/\r//' | awk
'{ print $3}'`
 fi
 if grep -is "^ *TroubleLog" $INI > /dev/null ; then
 TROUBLELOG=`egrep -i '^*TroubleLog' $INI | sed 's/\r//' | awk
'{ print $3}'`
 fi

 if [-s $TROUBLELOG]; then
 savelog -p -c 365 -n -q $TROUBLELOG
 fi

 if [-s $STATUSLOG]; then
 savelog -p -c 365 -n -q $STATUSLOG
 fi
done

This copes with multiple pacs instances on the same host. The advantage of using savelog is that old
logfiles are compressed. It should be quite simple to edit the files to have executable or log in /opt.
Also, don't forget to set the appropriate file permissions for the user that runs conquest.

Finally, Here are the command lines to compile the server under OS X xcode using 10.4u sdk on a
PowerPC (not recently tested):

 g++ -isysroot /Developer/SDKs/MacOSX10.4u.sdk -arch ppc -Wno-multichar
-I/usr/local/mysql/include -L/usr/local/mysql/lib -DDARWIN -DUSEMYSQL -DHAVE_LIBJASPER
-DHAVE_LIBJPEG -DB_DEBUG -o dgate total.cxx -lpthread -lgcc_s.10.4 -lstdc++.6 -lmysqlclient
-lz

And to compile under SOLARIS 10:

 /usr/sfw/bin/g++ -DUNIX -DNATIVE_ENDIAN=1 -DHAVE_LIBJASPER -DHAVE_LIBJPEG
-DSOLARIS total.cxx -o dgate -lpthread -lsocket -lnsl -lposix4

