
Conquest DICOM Server version
release 1.4.19c
November 11, 2018

Contact, Conquest DICOM server and many MicroPACS extensions
Marcel van Herk; The Netherlands University of Manchester; Manchester; vanherkmarcel@gmail.com

Original MicroPACS developer (not active anymore)
Mark Oskin; UC Davis Medical Center; PACS Research and Development Lab.
(916)734-0308 / FAX (916)734-0316 / Email: mhoskin@ucdavis.edu

Administrative / Licensing Contact, original MicroPACS components
Richard L. Kennedy; UC Davis Medical Center
(916)734-7267 / FAX (916)734-0316 / Email: rlkennedy@ucdavis.edu

Copyright (c) 2018 University of Manchester, The Netherlands Cancer Institute.
Developed by Marcel van Herk and Lambert Zijp at the Netherlands Cancer Institute; RT Department;
now maintained by Marcel van Herk at the University of Manchester

Server core based upon:

Copyright (c) 1995 Regents of the University of California. All rights reserved.
Developed by: Mark Oskin, mhoskin@ucdavis.edu; University of California, Davis Medical Center; Department of
Radiology with a Solaris port done and maintained by: Terry Rosenbaum; Michigan State University; Department of
Radiology.

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this paragraph
are duplicated in all such forms and that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the University of California, Davis and The
Netherlands Cancer Institute, Amsterdam. The name of the University may not be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED “AS IS” AND
WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

We would like to thank all individuals that help with testing, maintaining and documenting the
Conquest DICOM server. Please keep up the good work!

I thank all users that have made contributions to this manual, reported bugs and made feature requests.

mailto:portal@nki.nl

TABLE OF CONTENTS

SECTION 1 INTRODUCTION..3

SECTION 2 WINDOWS INSTALLATION GUIDE...6

2.0 INTRODUCTION...6

2.1 FIRST TIME INSTALLATION..7

 Database Selection...7

 DICOM Server Configuration...8

 Installing as an NT Service...9

2.1.1 VERIFY INSTALLATION...10

 Verify TCP/IP Connectivity...12

 Verify Database...12

 Test Server...12

 Browse Database Options...12

 Query/Move page..16

2.1.2 MULTIPLE SERVERS ON ONE PC..18

2.1.3 Updating to Newer Versions...18

APPENDIX 1: Database setup and benchmarks ..19

APPENDIX 2: Using Conquest as DICOM router and gateway...........................24

APPENDIX 3: How to set up a Redundant Conquest Server in a Windows........28

APPENDIX 4: Using Conquest web server..30

APPENDIX 5: Dgate Command Line...41

APPENDIX 6. Configuration Files and Discussion...44

 Import/ExportConverters Syntax...58

 Lua scripts...64

 Debugging Lua scripts..75

SECTION 1. INTRODUCTION

Conquest is a Windows, Linux or Unix based PACS system that has, at it’s core, the UCDMC DICOM
Network Transport libraries. This system has been combined with a complete Windows user interface ,
which also acts as installation program (written in Borland Delphi) to form the Conquest DICOM
server. A web interface and extensive scripting options are also available. The Information Definition is
designed to be field/run-time programmable. Below the DICOM interface is a database connectivity
class that uses a stable built-in SqLite driver or DBASEIII driver, talks to ODBC compatible data
sources (Windows only), MySql or PostGres. This combination permits a PACS system with the
following features:

 Complete DICOM Interface. Including SCP’s for run-time programmable storage IOD’s,
and SCP for DICOM Queries, Retrieves and Gets. Any behavior can be modified by scripts.

 Programmable SQL Database tables. This user-programmable feature allows the
MicroPACS to be custom tailored to a particular Clinical/Research area. For instance, in a
CR setting, the PACS system can be programmed to allow users to query on kvp and ma or
in a CT setting, the PACS can be programmed to allow queries on slice-distance.

 The communication to the database is done via a built-in SqLite (default and advised for
small archives of up to 1,000,000 images), a built-in dbaseIII driver, ODBC (Windows
only), MySQL or Postgres. This allows a de-coupling of PACS and SQL technology.
ODBC has been tested with (Windows only):

 Microsoft Access
 SQL server
 Some users have reported successful operation using Interbase and Oracle. Oracle

requires simple manual editing of the DICOM.SQL file, where the names of fields
‘rows’ and ‘columns’ are changed to, e.g., ‘qrows’ and ‘qcolumns’.

 See appendix 1 for tests of the various database options.

 (Conquest addition) Easy installation of many servers on a single PC. Servers may run as
service(s).

 (Conquest addition) A database browser and slice viewer (Windows only) integrated in the
PACS system with options for: viewing the DICOM information in a slice, creating BMP
files (ideal for slides), sending selected images, printing, and database fix tools such as
changing patient IDs, and deleting, anonymizing or modifying patients, studies, series or
selected images. Also tools to merge or split series. Drag and drop to load DICOM or HL7
files or directories.

 (Conquest addition) A simple query/move user interface (Windows only) for diagnostic
purposes, to improve your knowledge of DICOM, and to grab missing data from another
server.

 (Conquest addition) Fully integrated functionality in one user interface.

 (Conquest addition) Simple print server (Windows) - to default printer.

 (Conquest addition) Log files, which are daily zipped (Windows only). 7Zip is used.

 (Conquest addition) Correct display of JPEG, JPEG2000, JPEGLs and RLE compressed

images in browser (Windows only).

 (Conquest addition) Flexible configuration of JPEG, JPEG2000, JPEGLs and NKI private
compression with optional (de)compression of incoming, dropped, transmitted and archived
files. The actual JPEG (de)compression is done using a modified version of the International
JPEG group code, OpenJPEG and CharLS.

 (More Conquest additions) High performance (e.g., using a read-ahead thread) access, and
simple image forwarding/action capability.

 Runs and compiles on Linux and has a simple WEB interface.

 DICOM Worklist query functionality with HL7 import and translation to DICOM worklist.

 Virtual server functionality: queries and retrieves can be forwarded to up to 10 other
servers. (see appendix 7).

 Includes a simple series viewer based on EZDicom / K-Pacs (many thanks to Chris Rorden
and Andreas Knopke).

 Version 1.4.12 improves database performance, has some important bug fixes (rare crashes,
incomplete deletion and grabbing, and rare database corruption on dbaseIII). Further it has
the possibility to forward multiple images on a single association, and improved
documentation (appendix 5-7).

 Version 1.4.12b and c add importconverters and bug fixes in dbaseIII driver and web access
and does not allow .dcm with nki compression

 Version 1.4.13 has a web viewer based on K-PACS, SQLite is now included, and more
import and export converter options were added such as delayed forwarding and
preretrieval. More automatic setup of the databases has been added to simplify installation.

 Version 1.4.14 extends and the web interface; adds computed fields like 'Number of Patient
Related Instances' extends the exportconverters.

 Version 1.4.15: 64 bit supported (to support very large dicom objects), postgres supported,
improved virtual server performance, jpg images possible in web interface, multiframe
support in serverside viewer, sequence access in scripting, anonymize_script.cq, better
handling of corrupt DICOM files and a few more scripting options

 Version1.4.16: Internal JPEG (IJG) and JPEG2000 (Jasper) support added by Bruce Barton,
more scripting options; WADO server and client, more converters; improved
serversideviewer, caching of repetitive queries, enabled MAG0\incoming folder, upload
from web server, optional overlap of get and send in virtualservers, animated GIF and
preliminary MPEG support.

 Version 1.4.16rc2 adds exporting zip files, log file zipping and cleanup at night also for a
service and linux, more commands and fixes

 Version 1.4.16rc4 adds lua as very fast and flexible scripting language for converters (with
access to configuration, connection, dicom objects, pixel data, database, queries) and web
page design

 Version 1.4.16 fixes several bugs

 Version 1.4.17 extends the lua scripting system extensively for tasks such as: web page
generation, anonymization (including image masking), forwarding, preprocessing and

modifying queries, postprocessing query results and outgoing images, debugging,
modification and logging of incoming images, image processing, capturing failed stores, or
to much to list! Of course this version also fixes all bugs encountered in 1.4.16. This version
may also be used as pure bridge between any DICOM PACS system and WADO.

 A connection to the ZeroBraneStudio IDE allowing easy development, testing and
debugging Lua scipts. This makes Conquest even more a general purpose DICOM
workhorse.

 In 1.4.17b the scripting options have been extended and some bugs have been fixed.

 In 1.4.17c some more bugs have been fixed, such a thread safety of 'forward to AE' import
converters, and allow channel * in these functions, allow dgate –dolua:filename

 In 1.4.17d the scripting options have been extended and bugs have been fixed.

 In 1.4.17e the network library has been fixed to work with Aria.

 1.4.18 is maintained by Bruce Barton for Mac and Linux.

 1.4.19beta sees a complete recoding of the browser in the GUI for speed and lots of new
options such as flexible DICOM modification, server speedup, JpegLS and better Jpeg2000
compression (thanks Bruce Barton), a completely scripted web interface with a new
interactive viewer, and options for a new flexible anonymisation server.

 1.4.19beta3 is mainly a bugfix release with mostly minor fixes. It is intended to be the final
1.4.19 release after a a few users have played with it.

 Version 1.4.19 fixed one major bug: anonymisation failure for old databases and a few
small bugs; scripting adds Rclient; fix overflow crashes jpegLS and jpeg2000 compressors

 Version 1.4.19a fixes lossless jpeg decompression on color images and a merge issue. It
adds a web based installer and revamps the newweb web interface.

 Version 1.4.19b adds printer header/footer/background; gamma clause in bitmap converters;
fix cancel C-move crash; and several other fixes.

 Version 1.4.19c adds C-GET, optional case-insensitive searches (configured through
dicom.sql), a small built-in web server (using Ladle), and uses bigger file buffer sizes and
bug fixes.

SECTION 2. WINDOWS INSTALLATION GUIDE

This section details how to setup the Conquest DICOM server, as well as how the various
components work together. More information and discussion may be found at the forum:
http://5.214.110.44/forum/forum/index.php?board/33-conquest-users/

2.0 INTRODUCTION

For clarity/brevity, this section makes the following assumptions:

The server is located in "c:\dicomserver"
Your Image Storage drive is "c:\dicomserver\data"
You have only one image drive
All Conquest DICOM server files are in "c:\dicomserver", i.e., after unzipping
‘dicomserver1419c.zip’.

Minimum System Requirements:

* Windows XP/Vista/Windows7/Windows8/Windows10
 (for Linux see separate manual).
* 32 or 64 bit OS
* 96 megabytes of memory
* 1024x768x256 display.
* 200 MB free hard disk space (for some images).

Recommended System Configuration:

* Windows XP or higher (for Linux or Unix see separate manual).
* 64 bit OS if very large DICOM objects (e.g., >1 GB) occur.
* Pentium 3 or faster
* 1 GB of memory or more (memory limitations affect the largest DICOM object that
can be transferred).
* 1024x768 true color display.
* As much disk space as you can get.

It is recommended that the user familiarize themselves with the Appendices, Discussions and
examples before starting to use the newly installed Conquest PACS.

Note: changing database or configuration files may require extremely
long regeneration for large image archives.

Note: always backup image and database files. Database corruption
is rare but has been reported, likely related to hardware faults.

file:///c:/dicomserver

2.1 First time installation.

There is a Windows GUI based installation which is detailed below. Since version 1.4.19 there
is also an experimental web based installation. Its use is documented in the end of this section.

Any part of the installation can be repeated at any time without loss of data, since the database
may be (re-) generated from the images stored on disk. However, database regeneration may
take a long time and active connections may be terminated during some of the installation
steps. Note that the modality worklist cannot be regenerated; it therefore has its own clear
button.

Then, you must enter the following commands from the command prompt (or perform similar
functions using the explorer):

md c:\dicomserver
cd \dicomserver
unzip DICOMSERVER1419c.ZIP here, using folder names
conquestdicomserver

It is preferred to install the server in a directory without spaces in its name (a warning will be
given if you try otherwise). If everything went correctly, the server should display a message
that this is a first time installation (this window can be recalled at any time by deleting
dicom.ini and starting the server):

The database type for automatic setup should be selected here. You can choose: Built-in SqLite
driver (the default), Built-in Dbase III without ODBC, Microsoft Access (ODBC), Microsoft
SQL server (ODBC), Native MySQL driver or Native PostGres driver.

Built-in SqLite is used as default, since this driver does not require pre-installed software or
ODBC configuration. This default is advised for small archives of up to 1,000,000 images and
can also be used for huge archives with some restrictions on query speed. It can be used fine for
small production systems such as DICOM cache systems.

The built-in DbaseIII driver is quite OK, but startup is slow for large archives, and uncommon
queries may not be supported or may be slow. It is no longer recommended but still works fine,
e.g., if you want to upgrade an existing archive with new software.

Note: The built-in dBaseIII driver (Conquest addition) is not a full SQL server and poses limitations on query
keys: only queries like ‘key’ = exact match; ‘key*’ = value starts with key; and ‘*key*’ = value contains key,
are supported, as well as date-range queries and multiple UID matching queries. Only common hierarchical
queries are supported with fields that are listed in the single de-normalized table for the selected query level
(see file DICOM.SQL). Regular queries passing PatientID, StudyUID, and/or SeriesUID will be (very) fast,
even for huge archives. Other (image) queries in large archives (>1000.000 images) may be very slow. Server
startup time for huge archives may be long due to in-memory index creation (about 1 minute per 1000.000
images). During indexing the server is read-only and only shows indexed images. Due to these limitations,
DBASEIII is no longer advised for production servers. Use SQLITE for 'small' installations.

Native MySQL support and Postgres support are available. Under windows these options need
client DLLs, and not all 32 and 64 bits versions may be supplied in the release package or the
provided versions may be outdated.

To use ODBC access to SQL servers or database drivers not listed here (e.g., Interbase or
Oracle), an ODBC data source must be selected here. Then, ODBC configuration must be made
by hand instead of using the "Make ODBC data source" button that will be explained later.

The SQL server option requires a running Microsoft SQL server running on this or another PC.
The server will attempt to configure a database (default called "conquest", set through ODBC),
login name ("conquest", set in dicom.ini) and password ("conquest", set in dicom.ini). To be
able to do this the user interface will ask for the SA password as described later. The 'conquest'
login should have full permissions for the ‘conquest’ database. SQL server is much more stable
than Microsoft Access and is suitable for large-scale and multi-user archives, although MySQL
and PostGres are better in my view.

After pushing "OK", the server window should open. If this does not happen the following
problem may exist:

ODBC not installed (if required, which is not for most databases).

Ask your system administrator for help in installing/updating.

The following steps are not required when choosing "Default install".
Fill all entries in the "Configuration page" of the Conquest DICOM server.

These settings can be changed later at any time if required. The following entries may be
configured (the defaults are OK as a first test):

* Local unique name of this DICOM server (default "CONQUESTSRV1")
(AE name of this server, maximum 16 characters). To use special characters in the
name, close the server, edit the name in dicom.ini and restart the server).

* TCP/IP port to use (default 5678)
(use another value if there are multiple DICOM AE's on one machine). Port 5678 may
be occupied in Vista or Windows7. If the server has trouble starting, please try another
port number. Running multiple DICOM servers on one machine require them to have
different ports.

* Local disk directory to store data (default c:\dicomserver\data)
Click this string to select a directory. Patient directories will be made under the selected
directory.

* Enable JPEG(2000) support.
When set, the server accepts incoming Explicit coded and JPEG, JPEG2000 and
JPEGLs compressed images over the network, and will compress and decompress such
images as required by the following option.

* Images on disk are stored: (default uncompressed)
Storing images compressed may limit your ability to read the images directly from disk
using third party software. JPEG2000 compression is slow and lossy compression
affects the fidelity of the images. The options presented in the user interface correspond
with the parameters in dicom.ini named IncomingCompression and
DroppedFileCompression set to ‘un’, ‘n4’, 'nj', ‘j2’, ‘j6’, js, j7, 'jk', 'jl', and ‘uj’,
respectively. Double click the label to edit the string directly e.g. to set the compression
quality, see further section 7.7.

* Images on disk are named: (default DCM)
Storing images as V2 may limit your ability to read the images directly from disk using
third party software. DCM precludes using fast but now obsolete NKI compression. The
options presented in the user interface correspond with the parameter in dicom.ini
named FileNameSyntax. Double click the label to edit the string directly.

* Cleanup disk below … megabyte (default 0= do not delete even if disk full) (Cleaning the
disk involves deleting least recently loaded patients, may be configured as the oldest latest
study).

* Cleanup nightly below … MB (default 0= do not delete even if disk full) (This cleaning of the
disk occurs each night at 01:00).

* Below … MB move to … (default 0= do not move even if disk full) (Moves … MB data from
MAG0 to e.g., MAG1 at 02:00). This option requires the GUI to be running to function, it is
enabled if multiple MAG devices are defined – which needs to be manually done in dicom.ini.

* Keep server alive: if set, the server self tests once per minute and is automatically restarted in
the rare event of a software crash. This option requires the GUI to be running to function and is
generally not needed.

Push "Save Configuration". When JPEG support is changed the user will be prompted about
overwriting dgatesop.lst, which specifies the accepted transfer syntaxes. When the file
dicom.sql existed, a backup will be made of it, and it is overwritten. The user will be warned
that full db regeneration is required when its layout has changed. On a first install, the
installation page is then automatically displayed (you can go back for the next item later).

Optional (WinXP and up): Use "Install server as NT service" to run the actual DICOM server
(dgate.exe) independent of this user interface (it will then also re-start automatically when the
computer is booted). This option will install the service such that it logins with a system
account. On most windows systems only system administrators can use this option (run
'ConquestDicomServer' as administrator to make it work).

To work, the databases and images should reside on the local system with sufficient access
rights. Otherwise an error message is generated (push ‘Uninstall server as NT service’ to restore
the previous situation). ODBC is installed with a system datasource and should work without
modifying the service. However, if a network share is used, make sure the service has access to
the network resource, by opening its properties and changing the logon. Do not use drive
mapping, since services do not get these.

‘Kill and restart the server’ from the server status page can be used at any time to restart the
service. The name of the server is used as service name, and cannot be changed while using this
option. Use "Uninstall server as NT service" to restore that the DICOM server functions only
if conquestdicomserver.exe is running and to allow a change of server name.

NOTE: this version (v1.4.19c) will not run as service if the directory path where the server
executables reside includes space characters.

The following hidden option exists: when the service buttons are alt-right clicked, the service is installed four times
(e.g., with ports 5678…5681). Each server runs independently against the same data(base). Use for testing
purposes.

Next go to the "Installation" page of the Conquest DICOM server.

2.1.1 Verify Installation

Push button "Verify TCP/IP installation". It should respond with the following messages:

------------------- Start TCP/IP test --------------------
[CONQUESTSRV1] This output is generated by the dicom server application
[CONQUESTSRV1] If you can read this, the console communication is OK
[CONQUESTSRV1] This is systemdebug output; can you read this ?
[CONQUESTSRV1] This is a very long text output for testing -- This is a very long text output
for testing -- This is a very long text output for testing -- This is a very long text output
for testing -- This is a very long text output for testing -- This is a very long text output
for testing --
[CONQUESTSRV1] ---------- Succesful end of test -----------

If the response is different, TCP/IP may not be functioning on your computer. Ask your system
administrator for help.

When not using Dbase III without ODBC or native MySQL, push button "Make
ODBC/MySql/Postgres database", unless you want to configure the ODBC data source by
hand. After a confirm, it should respond with similar messages:

----------- Start ODBC data source update or creation -------------
[CONQUESTSRV1] Creating data source
[CONQUESTSRV1] Driver = Microsoft Access Driver (*.mdb)
[CONQUESTSRV1] Options = DSN=conquestpacs_s;Description=Conquest DICOM server… [CONQUESTSRV1]
Datasource configuration succesful
[CONQUESTSRV1] ----------------------------------
[CONQUESTSRV1] Creating data source
[CONQUESTSRV1] Driver = Microsoft Access Driver (*.mdb)
[CONQUESTSRV1] Options = DSN=conquestpacs_s;Description=Conquest DICOM server… [CONQUESTSRV1]
Datasource configuration succesful
[CONQUESTSRV1] ----------------------------------

If the response is different, ODBC may not be installed on your computer or the selected driver
has not been installed. Ask your system administrator for help. For MsSQL server, the same
button will read: "Make ODBC and database". In that case it will also as for the SA password.
If this is correctly given, the application will attempt to create the conquest database. This will
fail harmlessly when the database already exists. In this way it is possible to use free MsSQL
products that do not come with a user interface to create databases. For native mysql and or
Postgres, the button will read "Make mysql/postgres database", and will ask for the database
name and the root password (that defaults is empty). If this is correctly given, the application
will attempt to create the conquest database. This will fail harmlessly when the database already
exists. In this way it is possible to configure mysql/postgres very easily.

Note that it is perfectly possible to create or edit an ODBC/Mysql or Postgres database by hand.

Push button "Verify database installation". It should respond with the following messages:

------------------- Start ODBC test --------------------
[CONQUESTSRV1] Attempting to open database; test #1 of 10
[CONQUESTSRV1] Creating test table
[CONQUESTSRV1] Adding a record
[CONQUESTSRV1] Dropping test table
[CONQUESTSRV1] Closing database
[CONQUESTSRV1] Attempting to open database; test #2 of 10
[CONQUESTSRV1] Creating test table
[CONQUESTSRV1] Adding a record
[CONQUESTSRV1] Dropping test table
[CONQUESTSRV1] Closing database
.
.
[CONQUESTSRV1] Attempting to open database; test #10 of 10
[CONQUESTSRV1] Creating test table
[CONQUESTSRV1] Adding a record
[CONQUESTSRV1] Dropping test table
[CONQUESTSRV1] Closing database
[CONQUESTSRV1] ---------- Succesful end of test -----------

If the response is different, the database or drivers may be buggy. Ask your system
administrator for help. When using native MySql or PostGres and the response is different,
database conquest may not exist (or password and username may be wrong) or mysql/postgres
may not be running. Attempt to create the database again using mysqladmin (with ‘mysqladmin
–u root create conquest’) and make sure mysql runs.

Push button "(Re)-initialize database". After confirmation, it respond with the following or
similar messages:

------------------- Start database init and regeneration --------------------
[CONQUESTSRV1] Regen Database
[CONQUESTSRV1] Step 1: Re-initialize SQL Tables
[CONQUESTSRV1] ***SQLITEExec error: no such table: DICOMWorkList
[CONQUESTSRV1] ***SQLITEExec error: no such table: DICOMWorkList
[CONQUESTSRV1] ***Failed SQLITEExec : DROP TABLE DICOMWorkList
[CONQUESTSRV1] ***SQLITEExec error: no such table: DICOMPatients
[CONQUESTSRV1] ***Failed SQLITEExec : DROP TABLE DICOMPatients
[CONQUESTSRV1] ***SQLITEExec error: no such table: DICOMStudies
[CONQUESTSRV1] ***Failed SQLITEExec : DROP TABLE DICOMStudies
[CONQUESTSRV1] ***SQLITEExec error: no such table: DICOMSeries
[CONQUESTSRV1] ***Failed SQLITEExec : DROP TABLE DICOMSeries
[CONQUESTSRV1] ***SQLITEExec error: no such table: DICOMImages
[CONQUESTSRV1] ***Failed SQLITEExec : DROP TABLE DICOMImages
[CONQUESTSRV1] ***SQLITEExec error: no such table: UIDMODS
[CONQUESTSRV1] ***Failed SQLITEExec : DROP TABLE UIDMODS

[CONQUESTSRV1] Step 2: Load / Add DICOM Object files
[CONQUESTSRV1] [Regen] F:\dicomserver\Data\HEAD_EXP_00097038\0001_002000_892665661.v2 -SUCCESS
[CONQUESTSRV1] [Regen] F:\dicomserver\Data\HEAD_EXP_00097038\0001_003000_892665662.v2 -SUCCESS
[CONQUESTSRV1] Regeneration Complete

These or similar "failed" messages occur normally, when the server attempts to delete tables
that dot not exist yet. The [regen] messages show that each image file is entered into the
database. They will be missing if the image folder is empty. If the response is otherwise
different, you may have not performed the full installation correctly. Best is to retry from the
start or get help.

The button "Clear worklist" will create and/or re-initialize the worklist table: During install it
it will not be re-created automatically if it already contained data. Use this button after changing
the database format; it will erase all worklist data.

Go to the "Known DICOM providers" page and enter information about the systems that you
want to communicate with. A similar step is required at those systems to make the Conquest
DICOM server known to them. Push the "Save this list" button. The server will load the
changed list at this point, without a restart. Note that only a single server reloads the list. If
multiple servers run (using the hidden four-service option), they have be to restarted in another
way to reload the list.

WEB BASED INSTALLATION

Since 1.4.19 a web based install is provided for Windows and Linux. It can be started by
running e.g. c:\dicomserver\install\windows.bat or install\linux.sh. Both scripts start a limited
dicom server as service manager and then launch a web page that looks as follows:

Functions are:
– Install : write configuration as given above, test and generate database.
– Control: edit list of DICOM providers, start and stop the server.

– Use: configure web interface, and enter web interface.

On Linux the web interface also provides links to compile the web server binary. The welcome
line talks you through installation. Both install methods are compatible but for Linux it is the
only user friendly (yet experimental) install option. While the install web page is running, a
special version of dgate.exe is running. This starts and stops the server. After installing, the
server should be started in the original way to run.

After installation is complete: you can test the server as follows.

TESTING THE SERVER FUNCTIONS

1) Try buttons on the "Maintenance" page (with the exception of "(Re)-initialize database"
since this action can take quite some time).

2) Browse through the database and look at some pictures in the "Browse database" page.
Right-click the image with the mouse for several extra options:

- "Show header (F9)" lists the DICOM header of the currently selected image. Use
keys CTRL-A = select all, CTRL-C = copy to clipboard, CTRL-F = find text,
CTRL-S = save as text file, F3 = search again, F9 = close.

- "Save as Bitmap" saves the currently visible file as windows BMP, JPG or GIF
file. Multiframe images will be exported as animated GIF if GIF is selected.

- “Show image in explorer”. Opens a file explorer at the selected image.
- "Run K-Pacs viewer (F2)" shows a more advanced viewer (does not support multi-

frame objects well).
- Optional "Run external viewer" (if configured in dicom.ini) starts an external

viewer program with the selected DICOM image as argument.
- The "DICOM Send" options allow sending the current image, selected images of

the current series, the current series, the current study, or the current patient to
another DICOM station.

- The "Export to ZIP file" options allow storing the current image, the current series,
the current study, or the current patient in a ZIP file.

- The "Export Anonymized to ZIP file" options allow storing the current image, the
current series, the current study, or the current patient in a ZIP file while removing
any identifying information.

- The “Print” menu has options for: "Print Image on local DICOM printer" prints
a full page printout of the selected image using the built-in DICOM print server on
the default Windows printer. The "Print Selected Images on local ..." option prints
a selection of images of the current series using a selectable page layout (default 4x6
images on a portrait page) on the default Windows printer. The "DICOM print
selected images to ..." option prints a selection of images of the current series using
a selectable page layout (default 4x6 images on a portrait page) on a selected
DICOM printer (configured on “known DICOM providers” page).

- The “Change Patient ID” options changes patientID to a given value. Because of
the changed UIDs, the changed slices will belong to new studies and series even if
the patient ID is changed back to its original value. I.e., images with a new patient
ID are considered as completely new images.

- The “Anonymize” options de-identifies the images according to a stand algorithm,
which is provide in script lua/anonymize_script.lua. It can be modified if needed.

- The “Modify” options provide entry of a Lua script modifying the images. See
below for more explanation. The "Merge selected series" sub-option will give a list
of all series in this study and will next merge selected series (generating new UIDs
for consistency). The "Merge selected studies" sub-option will give a list of all
studies in a patient and will next merge selected studies (generating new UIDs for
consistency).The "Split series" sub-option will give a list of all images in this series
and will next split selected images from this series (generating a new series UID and
new SOP UIDs for the selected images).

- The “Delete” options delete the selection from the archive; use with care. Sub-menu
"Remove image from database" option effectively hides an image from queries
(until the database is re-generated or the image is re-entered, e.g., by dropping it
onto the server from an explorer window).

- The “View full database (F11)” option allows in-depth exploration of the database.

When the ‘View incoming’ check box on the browser page is set, each newly stored slice is
displayed, with a red overlay of the calling AE. This options also displays incoming images to
be printed. While this option is ON, the built-in elementary DICOM printer is disabled.

Database browser and its pop-up menu. The menu options typically have sub-menu for
selecting this patient, this study, this series, or this image. In 1.4.19 the browser can sort; and

there are several keyboard shortcuts to quickly look through the images

The K-PACS viewer (F2) and header lister (F9) can be used for detailed exploration of the images.

The modify window allows scripted modification of almost any property of one or more
DICOM objects. The “Test Syntax” button runs the script on the selected image without

storing the result and is therefore harmless. Its output is shown in a pop-up window. “Load”
and “Save” load and save the script to file. “Start Modify” or alt-“Start Modify” is used to run

the script on all selected images, press alt while clinkcing keeps this window open.
Preprocessing includes generating all new UIDs, full anonymization, or keep the same. The
Copy option many not be used with “keep the same”. For the Lua language see the manual

below.

The view full database (F11) window.

Note that in some cases, the database browser may not correctly update changes made through
the menu. In those cases, select a different page of the server and go back to the browser page to
fully refresh the database browser, or enter a value in the filter box for patients.

3) Try to query or copy some images using the "Query / Move" page. You may query your
own database or copy from your database to your database as a first test. Hint: try different
"Query levels" and observe the results.

Query/Move page

To quickly fill in information such as the patient ID, double click on the result window where
the patient ID is shown. Double clicking a patient ID with the control button pressed will add
that ID to a comma separated patient ID list to copy several patients at once. This feature is only
available for the patient ID. The "Query level" button also allows you to select three query
methods.

The default method is a PatientRoot query, but lower in the list you will find query levels which
use the StudyRoot and PatientStudyOnly query methods. These query levels are provided
because many DICOM servers do not support the default PatientRoot query method. Default the
queries are on human-readable entries. By double-clicking on the label next to the Series
number edit box, the query mechanism switches over to using UIDs. This is less readable but
supported by more servers. To read the long responses, it is possible to resize the GUI.

Finally, it is possible to query a modality worklist.

The "Find Local Missing Patients" button finds all patient data on the selected DICOM system
that is not present on the LOCAL server for copying to a DESTINATION server. For example,
to grab all new data from a CT scanner, enter today’s date into "Study date", select the CT
scanner as DICOM system, and select the local server as DESTINATION. Push "Find Local
Missing Patients", which may take a while. The missing patients (if any) are listed. Then push
"Copy to destination" to copy the missing patients into the local server.

4) Entering DICOM or HL7 files into the server is provided through a drag and drop interface.
Just drag and drop files or directories from the explorer to add them. The dropped files are

copied into the data directory of the server and the database is updated to include the new files.
Images of a single patient may be entered with a changed patient ID by pressing the ALT key
while dropping the files or the directory. This latter option will generate new study, series and
SOP instance UIDs for consistency. HL7 files update the worklist database only and patient ID
changing is not available. A variety of compressed archives can be dropped as well, that will be
decompressed by 7za.exe. Note that there is a limit of about 4000 files that can be dropped at
once. If you have more, drop the folder instead.

5) Look at the "Server status" page to see connection activity and print server progress. To
read long lines, it is possible to resize the GUI. This page also contains the "Kill and restart
the server" button which is needed when the DICOM server has crashed (please report any
crashes on the forum). Also from this page, a fully lua scripted built-in version of the webserver
based on ladle can be run; this is not dependent on e.g. Apache, but is not suitable for
production use.

The "Hide this server (as tray icon)" and other buttons do what you expect of them. The small
up/down arrows set the amount of debug information displayed when debug log is switched on
(up=more, down=less). At high debug levels also internal communication from the server is
logged.

2.1.2 Installing multiple servers on the same PC.

Installing two or more servers on one PC is a nice way to test DICOM since it allows copying
and querying in a simple way. Many servers can be running simultaneously. However, it is
essentially helpful to leave the first server(s) running while attempting to install new ones
(otherwise the same TCP/IP ports will be used and the servers will fail to operate
simultaneously). The installation must be done in different directories. So replace
"c:\dicomserver\" by, e.g., "c:\dicomserver2\" and perform all installation steps again. The
servers must be made known to each other using the "Known DICOM providers" page. If an
SQL server is used as database, each DICOM server should have its own SQL server database
and login.

2.1.3 Updating to newer versions.

Typically, a new version can be installed by just replacing the exe and dll files with newer
versions (it is a good idea to keep backups of the older ones). Note that in 1.4.19c, the
executables stored in install32 and install64 folders must be copied manually when updating
(the installer does this automatically).

Naturally, the server must be stopped before files can be replaced. In case the server runs as a
service it must be stopped using the control panel or by un-installing it as a service. To enable
use of a new database layout (requires a full regen!) and/or new modalities and JPEG
communication, the files dicom.sql and/or dgatesop.lst can be manually deleted prior to
installation; new versions of these files are created when conquestdicomserver.exe is restarted.

To choose a new database driver delete dicom.ini, which also causes dicom.sql to be
overwritten. Be careful, since installing a modified version of dicom.sql requires re-
initialization of the image and/or worklist database using the buttons on the installation or
maintenance page. Regeneration may take a very long time (several days) for large databases.

In 1.4.19(a,b,c), the internal UIDMODs (anonymization key) table has changed. To update
it after installing1.4.19 executables in older databases, push the 'verify database
installation' button on the install page. If needed this will add the Stage and Annotation
columns (see server status output).
This is equivalent to these command lines, which fail if not needed:
dgate --dolua:"sql('ALTER TABLE UIDMODS ADD COLUMN Stage varchar(32)')"
dgate --dolua:"sql('ALTER TABLE UIDMODS ADD COLUMN Annotation varchar(64)')"

If you do not want to regenerate the database, keep a copy of your previous dicom.sql and
restore it (making sure it has the worklist database entries in it) after upgrading.

APPENDIX 1. Database setup and benchmarks

The conquest DICOM server can use any ODBC database and includes quite a few native drivers.
Since there have been a number of issues with database performance, I decided to stress test a few
database solutions a year or so ago.

The benchmark is a set of queries that will duplicate a snapshot of our hospital’s Conquest research
PACS (Built-in DbaseIII driver) from 2004 with 4.375 million images into a test server. The records
are transferred through command "dgate –clonedb:conquestsrv1" on conquestsrv2 from conquestsrv1
to conquestsrv2. This is equivalent of a regeneration of a big server (14700 patients, 36000 studies,
195000 series and 4.375 million images), but EXCLUDING the read time of the objects. Hence we
purely test database write speed – which is the most demanding database operation. The operation that
is performed is that, for each patient, study, series and image, it must be found out if it already exists on
the server. If not, the item is added else it is updated. The queries are special in the sense that the
primary keys are DICOM UIDs, which are quite long strings. Next, a query test is performed where of
2000 patients all images are listed, on average 300 images per patient.

The recent tests were run a Intel I5 machine from 2015 with 4 Gbyte of RAM, without hyper-threading,
running Windows 10 home, and using an SSD disk. Both source and destination servers run on the
same machine, but in practice the source server is barely loaded.

MICROSOFT SQL SERVER (SQLEXPRESS 2014)

I downloaded sqlserver express SQL server 2014. As it required an ms account I downloaded the it
elsewhere. Download takes 10 minutes; it is a whopping 853 MB. sql server - start install. I disabled
management tools; used named instance SQLExpress; enabled mixed mode; set SA password <pw>.
services - sqlbrowser - start (maybe needed because I disabled it at setup, needed at all if you guess the
name?).

To install I needed to switch to 32 bits mode (delete dgate64.exe and install64/dgate64.exe). Then
install a conquest server using SQL server for database. The server will first ask for the SQL server
name. This is (local) for the default SQL server instance. If using SQL server express 2014 with a
named instance, select COMPUTERNAME\SQLEXPRESS or similar as SQL server. The server then
asks for a database name, login and password for the database to be used with the DICOM server. The
database and login will automatically be created if they did not yet exists (harmless error messages
appear if they did exist). Finally, the server asks the SA password to be able to perform the installation
automatically.

Alternatively create database conquest, with login conquest (important: use SQL server authentication)
with password conquest by hand. Initialize the database. I then ran the clonedb task to load 4.3 million
images into the system.

Write speed. With conquest 1.4.19, the clonedb operation took 1 h 57 minutes, over 600 images per
second. There is no noticeable speed difference for large or small studies or early and late in the
process. The database size is 3.13 GB. CPU Activity is 50% with 1.6 - 2 GB memory used for the SQL
server and it is the most resource hungry of all servers.

Read speed. Quite fast: a fit shows 28 ms + 0.084 ms per record.

SQL server cannot be used from Linux and ODBC configuration is not automatic on 64 bits OS's.

MARIADB

Installed xampp-win32-5.6.19-0-VC11-installer (110 MB)- includes 10.1.10-MariaDB - with all
defaults, and gave it a root password. Run xampp control panel as admin; made apache service and
made mysql a service. Started xampp and then started mysql. Then I installed the conquest server using
the Native MySQL driver option. The server asks for the root password to be able to install the
conquest database, and it will then actually run as root database user by default: i.e., the database
username is set to root. MariaDB works fairly slow without manual configuration, it works fine both in
MYISAM or INNODB mode. The new test is with MYISAM.

Note that the server will also set the following registry entries to avoid that mysql chokes during
extensive activity such as dropping thousands of files into the server:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\MaxUserPort = 65534
HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay = 30

Write speed. This clonedb operation took 8 hours and 47 minutes or 135 images per second, the slowest
one tested. There is no noticeable speed difference for large or small studies or early and late in the
clonedb process. The database size is 3.7 GB. Memory and CPU use a very small, I assume the default
setup is optimized for memory and cpu use, but not for speed. Previously MySQL tests were much
faster.

Read speed. Is still extremely fast: a fit shows 8 ms + 0.067 ms per record.

Note: for MariaDB >= 10.2.4, the name of the fields ‘Rows’ and ‘Colums’ in the image database
must be changed to (e.g.) ‘QRows’ and ‘QColums" before the database is initialized (i.e., after
"Save Configuration").

BUILT-IN DBASE III Driver

The built-in dBaseIII driver runs out of the box. The parameter IndexDBF in dicom.ini should,
however, be initially set to about 10 times the expected number of million images to be loaded in one
session (the default allows loading 100.000 images before needing a restart). This allocates enough data
to store the index buffer. Spare space is allocated when the server is restarted.

In contrast to the "real" sql servers, the DbaseIII only includes indexes on Patient ID. This index is kept
in memory and generated each time the server is started. So, starting a large server takes several
minutes (the source test server takes 8 minutes to start). This also means that any (image) query that
spans multiple patients will be veryyyyyy slow – this should, however, not be a problem in routine use,
as these queries are almost never used.

Write speed. The dbclone operation took 3 hours and 15 minutes or 370 images per second. There is
some speed difference between large or small studies – small patient studies load a lot faster/ The
database size is 6.1 GB, which is almost completely taken up by the denormalized dicomimages table.

Read speed. Even querying large patients (with 2000 images) takes about 1 second for a full image

query from the test database of 4.374 million images. Queries that are not supported by the index (e.g.,
search individual images on patient name) take very long (minutes). Because the index is kept into
memory, the server is very responsive once the index is done during server starting. Quite fast: a fit
shows 12 ms + 0.1 ms per record.

This driver is no longer advised for production systems but is OK for upgrades. Use SQLite for small
production systems.

Microsoft access

The setup works for 32 bits dgate only (delete dgate64.exe or install64/dgate64.exe). Just select the
access driver and install the server.

Write speed. With this setup, and conquest 1.4.12, the dbclone operation did not conclude. On average
again about 200 images are loaded per second. However, the database size grew very quickly -
reaching 2 GB at 250000 images after 30 minutes – and then new images could not be added any more.

Read speed. At this size, typical image queries (400 records) take 1 s or so.

Built-in SqLite driver

The setup runs out of the box. Just select the sqlite driver and install the server. Then I ran the clonedb
task to load 4.3 million images into the system.

Write speed. The clonedb operation took 6 hours and 47 minutes, 170 images per second. There is no
noticeable speed difference for large or small studies, however, write speed does goes down late in the
process – when the database gets large. The database size is 2.9 GB.

Read speed. Queries to the server are reasonably responsive. SqLite can also be used in Linux. The
query test fit shows a slow response time of 68ms + 0.33 ms/record.

PostgreSQL

I installed postgres 9.5.1-1 for windows x64 (62 MB), installed with all defaults, password <pw>.

The write speed is impressive: 1 hour 57 minutes (over 600 images per second). The database size is
2.9GB. The query speed is 77ms + 0.067 ms / record.

<<<NOTE: Required encoding for postgres (e.g., LATIN1 or Win1251). For Linux: Export
PGCLIENTENCODING=LATIN1>>>

NULL Driver

If no SQLServer name is entered in dicom.ini, a NULL driver is used for the database. This drivers
accepts all writes and updates, and responds with 0 records for any query. This driver is useful for
speed testing, to run database-less image receivers, and for DICOM routers. With the NULL driver, the

server clone operation took 1 hour and 8 minutes (over 1000 images per second). This is the overhead
of the server.

Table. Summary of database tests: tested writing 4.375 million images and then performing queries
listing all (average 300) images per patient. Notes: 1) Queries into the image that do not pass a patient
ID are very slow, and not all fields can be queried at all levels. 2) Free For personal use. 3) Useful for
multi-headed archive: multiple conquest servers running against the same database and data storage:
they all show the same images, and can use mirroring to allow fast access to images for e.g., different
hospital departments. *) Not recently tested.

Conclusions

See the table above. For beginner users the built-in Sqlite drivers is perfect: it is built-in and therefore
easy to install and also very fast for common queries. DbaseIII works OK but should be avoided for
large production systems. Best performance is definitively found with SQLserver and Postgres. More
experienced users may benefit from SQL server although performance problems occur under certain
situations. Using Microsoft Access should be avoided.

Since database speeds are similar, familiarity with a database may be the best reason to select one!

APPENDIX 2. Using Conquest as a DICOM router and gateway.

The Conquest DICOM server has functionality to route incoming DICOM images to other servers
(DICOM router) and to forward incoming query/move requests to other servers (DICOM gateway or
virtual server). The first option is often used to distribute images over multiple servers based on filters.
The second option makes Conquest a perfect image cache and/or central point of access for your
hospital’s PACS.

Configuration of both options is through DICOM.INI. It is advised to only change DICOM.INI when
the server is closed, as "save settings" in the GUI will overwrite your fresh changes. However, for
making things work: most items can be changed while the server is running except ExportConverters.

Import and export converters allow automation of many DICOM related tasks. They run as follows:

As an image comes in these are run one by one in order:
ImportConverter0
...
ImportConverter99

Then the image is stored in the database and stored on disk.

Afterwards ExportConverter0 .. ExportConverter19 occur, which are all running in parallel in random
order.

DICOM Routing

The following shows some examples of DICOM routing. There are 6 export converters installed (out of
maximal 20: ExportConverter0..19), with different filter options:

ForwardAssociationLevel = SERIES
ForwardAssociationCloseDelay = 5
ForwardAssociationRefreshDelay = 3600
ExportConverters = 6

ExportModality0 = CT
ExportStationName0 = CT_SCANNER
ExportCalledAE0 = CONQUESTSRV1
ExportCallingAE0 = CONQUESTSRV2
ExportFilter0 = Rows = 512 and Columns = 512
ExportConverter0 = forward to SERVER1

ExportModality1 = MR
ExportConverter1 = forward compressed as j2 to SERVER2

ExportModality2 = RT*
ExportConverter2 = forward to RTSERVER; forward to RTSERVER2 org MYSERVER

ExportConverter3 = forward patient to VIEWERAE
ExportConverter4 = forward study to SERVER3
Exportconverter5 = ifequal "%u","SERVER2"; stop; between "9", "17"; defer; forward to SERVER2

The item ExportConverters determines the number of converters in use. An export converter is an
external or internal program that is run for each incoming image slice of prescribed Modality,
StationName, CalledAE and CallingAE (* matches anything, this is the default value). Note that an
empty string is not the same as ‘*’, empty string will only match, e.g., empty Modality.

Files that match all items above are tested against an optional SQL statement in ExportFilterN, e.g.,
ImageNumber LIKE '1%' matches all images with an image number starting on 1. All fields in the
database can be used in the SQL statement with the exception of PatientID (ImagePat may be used
instead), StudyInstanceUID and SeriesInstanceUID. Since the SQL filtering is relatively slow it is
advised to also/only use the hard coded filter options.

Note: When the built-in dBaseIII driver is used, filter queries are limited to fields in the de-normalized
image table, and only queries like: ImageNumber LIKE '1%' and Modality = ‘MR’ are supported.
Supported fields are listed in the DICOMImages definition in dicom.sql, and only the and keyword is
supported. Spaces should be used exactly as in the example.

The ‘forward compressed as .. to’ option may use any style of NKI or JPEG compression using the
same values as defined for DroppedFileCompression. In the example, MR is forwarded using loss-less
JPEG compression to SERVER2. The 'org' option for “forward to' and 'forward compressed as xx to'
allows setting the name of the originating server. This may be used to allow a DICOM router mimic the
original sender.

When an export fails, exports on that converter are blocked for 60 s (=FailHoldOff); while 100 s
(=RetryDelay) after the last failure they will be automatically retried based on data stored in files like
‘ExportFailures5678_0’ (where 5678=port number, 0=converter number). These files may sometimes
need to be deleted (the GUI asks so at startup) to stop endless retries or limit the number of retries by
setting MaximumExportRetries other than 0.

The flag ForwardAssociationLevel may have values [GLOBAL, SOPCLASS, PATIENT, STUDY,
SERIES, IMAGE]. Forwarders keep the association open as long as the UID at
ForwardAssociationLevel does not change. The default is SERIES, creating a new association for each
series. By changing to more global settings more images are sent per association, improving
performance.

However, associations are always closed when a new image type [SOPCLASS] is sent that was not
sent before by this converter. After ForwardAssociationCloseDelay seconds of inactivity (default 5),
the association is closed. After ForwardAssociationRefreshDelay seconds of inactivity (default 3600)
the list of known sop classes is deleted. This latter option avoids having to restart conquest when other
servers change their capability.

The ‘forward patient to ’ option is a 10 minutes (configurable though ForwardCollectDelay, or using
the 'after' clause) delayed forward of the entire patient study (entire study or series can be handled in
the same way) to another server. I.e., even if a single image is received, the entire patient is forwarded.
This is useful to ensure that all data at a given patient level is available when forwarding i.e., a new

image to a viewer like k-PACS (needed for the typical situation where a physician would like to
compare a new scan with older scans, giving fast access). It is also useful to ensure that all data is
transmitted on a single association. Other new delayed export and import options are "prefetch" (read
data from disk to put it in cache, useful when data is stored on hierarchical storage) and "preretrieve
SERVER" (collect all data on incoming patient from server, useful when conquest is used as cache for
a big PACS). They are all executed on a single thread one at a time in order of reception. Data that is
collected by a "preretrieve" statement is not processed by import- or export-converters. The maximum
number of retries for these delayed options is set through MaximumDelayedFetchForwardRetries.

Export converters lines are executed asynchronously (they are queued in memory in a queue of
QueueSize length) but will somewhat slow down operation of the server. If one line contains multiple
commands (separated by ;) these are executed one by one in sequence. In- and exportconverters now
have a small scripting language and/or lua; allowing even more flexibility in routing, see A5.2.1, page
31.

Exportconverter5 is a real-life example of this scripting language. This script uses the commands
'ifequal "%u","SERVER2"; stop;' to ignore all data with calling AE of 'SERVER2'. This will avoid any
data from SERVER2 to be sent back to SERVER2 causing a potential loop. The commands 'between
"9" and "17"; defer' cause the converter to wait until after 17:00 before subsequent commands are
processed using the retrying mechanism. The last command forwards the data to SERVER2. Having a
similar line in SERVER2 forwarding to SERVER1 will cause both servers to synchronize after 17:00
without a loop.

DICOM Routing without database

The following demonstrates database-less DICOM routing using ImportConverters:
SQLHost =
SQLServer =
Username =
Password =
ForwardAssociationLevel = SERIES
ImportConverter0 = ifequal “%m”, “CT”; { forward to AE1 channel *; destroy; }
ImportConverter1 = ifequal “%m”, “MRI”; { forward to AE2 channel *; destroy; }

The empty database entries makes that the system uses a NULL database driver. The “destroy”
command in the ImportConverters stops the data from being stored on disk. Setting the
ForwardAssociationLevel limits the number of associations used to connect to AE1 and AE2. Note:
ExportConverters or delayed forward statements (such as “forward study to AE”) cannot be used in this
setup since the images are not stored and therefore cannot be transmitted later. The clause “channel *”
is an option of version 1.4.17b or higher, it splits simultaneous incoming connections over multiple
outgoing connections. Best is to use only one forward statement per ImportConverter line.
Note that also Lua scripting may be program forwarding in several ways.

DICOM Gateway or virtual server

DICOM gateway operation is simpler. Just add lines like these to your DICOM.INI:
VirtualServerFor0 = SERVER1
VirtualServerFor1 = SERVER2,CACHESTUDIES

VirtualServerFor2 = SERVER3,CACHESTUDIES,NONVIRTUAL

Queries and move requests sent to the local server are forwarded to the given AE titles in
VirtualServerFor0..9. The AE titles must be known in ACRNEMA.MAP. The client will effectively see
all data of the listed servers and this one merged – at the cost of query speed. The merging occurs
during each query in memory. When moves are performed, images retrieved from the listed servers are
stored locally (i.e., the server functions as a DICOM cache). This option makes Conquest a perfect
image cache and/or central point of access for your hospital’s PACS.
With version1.4.15, a flag VirtualServerPerSeries0..9 has been added. It defaults to 0, meaning that a
virtual server collects images on an image per image basis. In some cases this may not work, setting
this value to N means that if there are more than N images to be collected this will be done on a series
per series basis. Set the flag to 1 to collect all data per series. For Kodak, N should be set to about 800.
Since 1.4.16, server names may also be appended with ',CACHESERIES' or ',CACHESTUDIES'. In
this case, repetitive queries in the IMAGE table are cached locally at SERIE or STUDY level, under
the following filenames: MAG0\printer_files\querycache\YYYY\MMDD\xxxxxxxx.query and
MAG0\printer_files\querycache\YYYY\MMDD\xxxxxxxx.result. This option typically makes access
to slow DICOM servers much quicker. Also option OverlapVirtualGet has been added, if set other
than 0, data coming in for other (virtual) servers is transmitted directly through to clients. The value
determines how many objects are kept in memory. Add flag ',NONVIRTUAL' to instruct the virtual
server (this works only when connecting to Conquest DICOM systems of a recent version) to not
forward requests to its own virtual servers (to avoid loops and double entries).

APPENDIX 3. How to set up a Redundant Conquest DICOM Server in a
Two-Node Windows Cluster Environment

Alternate Titles I couldn't decide :)
Conquest Redundancy in Eight Easy Steps
Conquest Freedom in Eight Easy Steps
Conquest Cluster in Eight Easy Steps

To set up Conquest in a failover, redundant environment that will be virtually seamless to end-users
who need a highly reliable system, we installed Conquest in a Windows Clustered environment. This
environment is Active/Passive meaning that only one node has control at any time of the shared drive
where all the images are received. The second node sits passively waiting to be manually or
automatically failed-over.

This how-to will not explain how to install and configure Windows Clustered Services. There are many
documents online detailing how to set up a 2+ node Windows Cluster, and Windows Cluster
fundamentals. Setup will require the expertise of a Windows server administrator.

In our case, the cluster environment already existed and we installed Conquest as a DICOM
server/listener on these existing servers. If the cluster is in place, you can set up and test all of the
following in a couple hours especially if you are already familiar with Conquest

SET-UP

OS: Windows 2003 Server, Clustered Environment
FileSystem: Veritas Volume MGR installed to manage SAN shares - you can
use whatever you want as long as there is a shared drive available.
Nodes: Server A (192.168.1.6), Server B (192.168.1.7)
Virtual IP Address created for cluster: 192.168.1.5
Local drive letter: C:\
Clustered drive letter: G:\ drive for example represents a SAN share that is available to the active
node in the cluster
DICOM SCU Device: any CT scanner, DICOM workstation, or other hospital
PACS, in our environment we use TeraMedica Evercore since we require
storage of DICOM-RT and DICOM-RT-ION.

INSTRUCTIONS

(1) Set-up two Windows 2003 servers if not already in place. Configure clustered services and a shared
drive if not already in place.

(2) Once the cluster is configured, you should have a drive letter typically mounted from a SAN that is
shared to only one server node at a time. In this case, we call it G:\ drive.
(3) Once the cluster is configured and tested for fail-over, you will have a Virtual IP address (e.g.,
192.168.1.5) and two physical servers: Server A (192.168.1.6) and Server B (192.168.1.7). When you
ping the Virtual IP, you are actually pinging whatever is the active node in the cluster. Once you
complete all steps, when ever you send DICOM data to the Virtual IP, you are actually sending it to
whichever node is active as the primary node.

(4) Install Conquest on the active node local hard drive C:\

(5) The active node is connected to the shared, clustered drive, G:\ drive in our case. Configure
Conquest to use some G:\ path instead of C:\ path for all DICOM files. Configure Conquest to use the
same exact AE Title and port number on both nodes. You can use the default AET/port# provided by
Conquest
(6) Install Conquest as an NT Server Service so that it will run 24/7 listening for incoming data. Follow
the rest of the Conquest instructions for customization, setup, etc..

(7) Failover or ask your Windows Server Admin to failover to second node, Server B. Now that Server
B is the active node. repeat steps #4, #5, #6 on Server B.

(8) IMPORTANT: now configure your CT scanners, PACS, other DICOM SCU device to send ONLY
to the "VIRTUAL IP" address for the Windows Cluster (e.g., 192.168.1.5). This means that no matter
which node is currently active, all the files will go to the G:\ drive. Both nodes have the same port# and
AET, but it won't matter since only one node is actually receiving data at a time, because only one node
receives data through the virtual IP.

Conquest is technically listening actively on both nodes but it doesn't matter. All DICOM data is being
sent to the virtual IP address so only the active node that is actively connected to the G:\ drive will
actually receive the data. As soon as cluster is failed-over to second, passive node, then that server
becomes active and starts receiving the DICOM files.

We tested this many times causing the nodes to fail-over while actively sending files before and during
a fail-over. It works pretty well and usually our DICOM SCU's just attempted to resend if it failed
while the nodes were in the middle of a fail-over. Your mileage may vary, but it makes your system a
lot more redundant and you don't have to worry about any single server point of failure. Although this
was done in a Windows Cluster, I'm sure you could create the same situation in a Linux Cluster.

Happy ConQuesting!
Kim L. Dang

APPENDIX 4. Using CONQUEST WEB server

Since version 1.4.8, a small WEB interface has been built in into the Conquest DICOM server. To
enable it, you need to put dgate.exe, a special dicom.ini, (optional) dicom.sql as well as (optional)
scripts into the cgi-bin directory of your WEB server, and conquest.jpg in the root directories of your
web server.

The dgate executable acts as a CGI interface to a dicom server (another dgate executable) that runs
elsewhere (most likely on the same computer, but may be on another computer). It uses DICOM.INI to
set various things like the IP port on which it communicates. The communication goes through a
private DICOM interface. Files DICOM.SQL, ACRNEMA.MAP, DGATE.DIC must be the same as
the one in the server that is used, therefore it is best to set the correct path. The DICOM.INI used for
the web server is a different one as the one in the server.

This setup has been tested with Apache servers and Microsoft IIS. For Linux or Unix, the file
dgate.exe is replaced by the file dgate. Since 1.4.16, the web interface also accepts WADO requests.
Since 1.4.17, the web server may be used as a WADO bridge for any DICOM PACS. Web pages can
be scripted by the user in the Lua programming language.

The newweb interface is a complete web interface coded in Lua, and when setup in a webserver it is
accessed as follows:

http://127.0.0.1/cgi-bin/newweb/dgate.exe

Alternatively, from 1.4.19c it may be accessed for testing from the windows GUI on the server status
page, where a checkbox “Enable built-in web server” has been added. This starts a pure Lua mini-web-
server based on ladle (https://github.com/stpettersens/ladle). After checking the box, right click it to
open the newweb interface. This interface is quite limited but is good to test or demonstrate the web-
server code prior to installing and configuring it on a full web server.

Its configuration (cgi-bin/newweb/dicom.ini) is shown here:

#mvh 20151206 1.4.17d compatibility
#mvh 20160314 for 1.4.19

[sscscp]
MicroPACS = sscscp
Tempdir = c:\temp
ACRNemaMap = c:\dicomserver\acrnema.map
Dictionary = dgate.dic
WebServerFor = 127.0.0.1
TCPPort = 5678

[webdefaults]
size = 560
dsize = 0
compress = j2
iconsize = 84
graphic = jpg
viewer = wadoseriesviewer
studyviewer = wadostudyviewer

[DefaultPage]

https://github.com/stpettersens/ladle
http://127.0.0.1/cgi-bin/newweb/dgate.exe

source = *.lua

[AnyPage]
source = start.lua
exceptions=start,listpatients,liststudies,listseries,listimageswiththumbs,listimages,wadostu
dyviewer,wadoseriesviewer,wadoviewerhelp,slice,listtrials,listtrialpatient

The settings under [sscscp] configure the conquest server the web interface communicates with. The
only other setting is Tempdir which should be set to a folder that cgi applications have right to read and
write. The webdefaults entry defines the size of the viewers, downsize of image before display (0 is
none), compression for DICOM based viewers, size of icons in the thumbnail view, mode of display
for graphical images, and viewers used for displaying the images. The block of settings including
DefaultPage and AnyPage make that only the listed web pages are available. It effectively blocks the
old web interface. Note that AnyPage and DefaultPage must both be defined to block pages of the
built-in webserver such as “top”.

New scripted pages to be added must be listed under [AnyPage]Exceptions, any other request gets you
to start.lua. Some of its pages are shown here:

The study and series viewers of the newweb interface are mostly operated by the mouse wheel and/or
keyboard. Hover the mouse cursor over the display of the relevant settings to get hints on how to use it.
Good keys to use are 'B', brighter, 'D', darker, 'L', lower contrast, “H', higher contrast, P, preset
contrast, 'A': stored contrast, 'N', negative; I, zoom in, O, zoom out, arrows, pan, U, V move through
frames, page up/down, slice and 'Q': show header.

Both the new and the old web interface can use a range of viewers. Modify/add these entries in
to the dicom.ini of newweb to apply Weasis as study level viewer:

studyviewer = studyweasis

[DefaultPage]
source = *.lua

[AnyPage]
source = start.lua
exceptions=start,listpatients,liststudies,listseries,listimageswiththumbs,listimages,wadostudyviewer,wa
doseriesviewer,wadoviewerhelp,slice,listtrials,listtrialpatient,qido,studyweasis,weasisstudyxml

[studyweasis]
source = c:\xampp\cgi-bin\viewers\LaunchWeasisStudy.cq
header = Content-Type: application/x-java-jnlp-file\

[weasisstudyxml]
source = c:\xampp\cgi-bin\viewers\weasisstudyxml.lua

Then install Java; and download weasis-portable.zip (14.2 MB) and unzip it into e.g. folder
c:\xampp\htdocs\weasis. Folder htdocs/weasis should exist and contain files such as weasis-

launcher.jar, and folders such as conf.

If you open a study viewer, a jnlp file is created which should launch Weasis (not supported in all
browsers, this is from Firefox):

The original web interface is documented below; its development has mostly stopped. The dicom.ini
there has a number of entries that are explained below:

#
This file contains configuration information for the conquest cgi web server;
it must be in the same directory as the dgate.exe in the web server script directory.
For wamp: dgate.exe runs if it is put in C:\wamp\Apache2\cgi-bin
The server home page is then "http://127.0.0.1/cgi-bin/dgate.exe?mode=top"
The cgi interface has been tested with wamp5, dgate4.12d, and ie6sp1
#
modified 20070213: default to n4, note about ocx only required on client
modified 20080902: webreadonly ON; graphics and viewer configs; sample scripted web pages
modified 20101121: Added wadoservers section
modified 20120213: Added SQLServer, SqLite (enables lua dbquery and sql, see sample3)
modified 20120213: Added ACRNemaMap, Dictionay (enables lua dicomquery, see sample3)
modified 20120219: Organized the general samples, ecrf, soap and json
modified 20130528: Added new viewers, OpenCLinica; For 1.4.17 release
modified 20130813: small fixes For 1.4.17b release
20160425: Simplified for 1.4.19beta
20160830: Moved dgate.dic to local

[sscscp]
MicroPACS = sscscp

Tempdir = c:\temp

database layout (copy dicom.sql to the web server script directory or point to the one in your dicom
server directory)

kFactorFile = c:\dicomserver\dicom.sql

gives access to the SQL server of the DICOM server
use of independent database is also allowed (depends on scripts used)

SQLServer = c:\dicomserver\data\dbase\conquest.db3
SQlite = 1

gives access to all DICOM servers known in acrnema.map

ACRNemaMap = C:\dicomserver\acrnema.map
Dictionary = dgate.dic

default IP address and port of DICOM server (may be non-local, web pages empty if wrong)

WebServerFor = 127.0.0.1
TCPPort = 5678

AE title: only used if web client originates queries or moves

MyACRNema = CONQUESTSRV1

path to script engine: ocx will not download images if wrong - shows as black square with controls
for wamp: dgate.exe runs if it is put in C:\wamp\Apache2\cgi-bin

WebScriptAddress = http://127.0.0.1/cgi-bin/dgate.exe

if set to 1 (default), the web user cannot edit databases and (in future) other things
webpush enables push of data to other servers

WebReadonly = 0
WebPush = 1

these settings control size of slice and series viewers, max size of transmitted dicom images
(0=original), compression for images sent to the activex (may be un,n1..4,j1,j2), the size of
the icons in the image list, the image type used for icons and slice display, and the dgate
mode containing the viewer (may be seriesviewer, seriesviewer2, noviewer, serversideviewer,
or aiviewer - java code of the latter not included with 1.4.14).
note: all items require at least one space left and right of the '=' !

[webdefaults]
size = 560
dsize = 0
compress = un
iconsize = 48
graphic = gif
viewer = wadoseriesviewer
studyviewer = studyweasis

[wadoseriesviewer]
source = viewers/wadoseriesviewer.lua

enter address (up to not including the ?) of the WADO server for each DICOM AE listed
the sample (for AE TESTWADOSRV) comes from the DICOM standard and is not valid
the default is the local conquest server (which could use virtualservers as WADO bridge)
These WADO entries are used in 'list on'

[wadoservers]
TESTWADOSRV = http://www.hospital-stmarco/radiology/wado.php

Here are scripted series viewers: ImageJA, dwv, flexviewer (=aiviewer), weasis
And one scripted study viewer: studyweasis

[imagejaviewer]
source = viewers\imagejaviewer.cq

[dwv016]
source = viewers\dwv016.lua

[flexviewer]
source = viewers\flexviewer.lua

[weasis]
source = viewers\LaunchWeasis.cq

header = Content-Type: application/x-java-jnlp-file\

[studyweasis]
source = viewers\LaunchWeasisStudy.cq
header = Content-Type: application/x-java-jnlp-file\

[weasisseriesxml]
source = viewers\weasisseriesxml.lua

[weasisstudyxml]
source = viewers\weasisstudyxml.lua

default
[DefaultPage]
source = *.lua

Here are some snapshots. This is the home page (may need to use dgate.exe?mode=top):

Server configuration (incomplete and read only for now):

List studies (links to list series):

Push a series to another DICOM station:

List series (the thumbs link goes to an image list with icons, the patient ID to one without icons, the
view hypertext links to the K-PACS ActiveX viewer), the push link allows moving data to another
server, the delete link to remove the current series (not enabled by default):

List images without icons:

List images with icons:

View series with new default WADO viewer (wadoseriesviewer.lua, and old serversideviewer):

If viewer = noviewer:

Show image as GIF, BMP or JPG image and show header:

List worklist:

Edit or add to worklist:

The find button on the main page allows querying other servers:

Find Patient will search a substring of name or patient ID, Find Study/Series will search a substring of
name or patient ID or a study/series date (yyyy, yyyymm, yyyymmdd, or date range). Push will initiate

copying of data from the selected server to any other server known in acrnema.map. The query can go
down to image level and a minimal WADO view option is offered.

This option will try to access the image through WADO, which by default will try to find the image
locally or through a virtualserver entry, making CONQUEST a DICOM to WADO bridge.

Note 1): some browsers will not correctly refresh dynamic pages such as the worklist table. In this case,
use F5 to refresh the page manually.

Web support for Lua is quite complete. In the web configuration dicom.ini you can base pages entirely
on lua scripts:

[flexviewer2]
source = flexviewer2.lua

In the passed lua script you can call:

HTML(string, arg1,) -- to output HTML code
print(CGI('name'), CGI('name', 'default')) -- to read CGI parameters

In the web templates (cq files) you can use this construct to embed lua code (?> must be on separate
line):

<?lua
.....
?>

And this construct to output lua strings as HTML (must all be on one line):

Code: Select all
<%= %>

These constructs are intended to be similar to Lua CGI. In the cq file for weasis, this line is used to
create the web links for the images:

 <argument>$dicom:get -w %webscriptadress%?%extra%&mode=weasisstudyxml&compress=
%compress%&study=%study2%&dum=.xml</argument>

APPENDIX 5

The following listing shows the output of dgate -? (always in progress) :

DGATE: UCDMC/NKI DICOM server thread and PACS utility application 1.4.19c

Usage:
(1) DGATE <-!#|-v|-u#> Report as in dicom.ini|stdout|UDP(#=port)
 [-^|-l|-Lfile] GUI/Normal/Debug log to file
 [-p#|-qIP|-b] Set port|Set target IP|run debug 1-thread mode
 [-wDIR] Set the working directory for dgate(ini,dic,...)
 [-i|-r|-arDEVICE] Init|Init/regenerate DB|Regen single device
 [-d|-m|-k] List (-d) devices (-m) AE map (-k) DICOM.SQL
 [-t|-o] Test console|Test database
 [-sOpt|-esap d u p] Create ODBC source (WIN32), database with SApw
 [-nd|-nc#,FILE] NKI de-/compress# FILE
 [-nu IN OUT] Generic decompress NKI file
 [-jd|-jc#,FILE] JPEG de-/compress# FILE
 [-j*##|-j-##,FILE] Recompress FILE to ##
 [-as#,N|-amFROM,TO] Select#KB to archive of MAGN|move device data
 [-au|-aeFROM,TO] Undo select for archiving|rename device
 [-av|-atDEVICE] Verify mirror disk|Test read files for DEVICE
 [-abJUKEBOX1.2,N] Make cacheset to burn JUKEBOX1,CD2 from MAGN
 [-acJUKEBOX1.2] Verify JUKEBOX1,CD2 against cacheset
 [-adJUKEBOX1.2] Verify and delete cacheset for JUKEBOX1, CD2
 [-f<p|t|s|i>ID] Delete DB for Patient, sTudy, Series, Image
 [-f<e|d|z>file] Enter/Delete DB of file, Zap server file
 [-faFILE<,ID>] Add file to server<optionally change PATID>
 [-zID] Delete (zap) patient
 [-frDEVICE,DIR] Regen single directory DIR on DEVICE
 [-f<c|k>PATID,file] Change/Kopy PATID of file (irreversible/once)
 [-f?file|-fu|-c#] get UID of file|Make new UID|UID helper(0..99)
 [-ff#] Delete old patients until #MB free
 [-gSERVER,DATE] grab images from SERVER of date not on here
 Otherwise: run as threaded server, port=1111

(2) DGATE FileMapping Run server child; shared memory has socket#

(3) DGATE <-pPORT> <-qIP> --command:arguments
 Send command to (this or other) running server
 (works directly - use with care)
Delete options:
 --deleteimagefile:file Delete given image file from server
 --deletepatient:patid Delete given patient from server
 --deletestudy:patid:studyuid Delete given study from server
 --deletestudies:date(range) Delete studies from server on date
 --deleteseries:patid:seriesuid Delete given series from server
 --deleteimage:patid:sop Delete given image from server
 --deleteimagefromdb:file Delete given file from db only
 --deletesopfromdb:pat,study,series,sop Delete specified image from db only

DICOM move options:
 --movepatient:source,dest,patid Move patient, source e.g. (local)
 --movestudy:source,dest,patid:studyuid Move study, patid: optional
 --moveaccession:source,dest,patid:acc Move by Accession#, patid: optional
 --movestudies:source,dest,date(range) Move studies on date
 --moveseries:src,dst,patid:seruid,stuid Move series patid: optional
 --move:src,dst,p,st,ser,sop Move patient..image

Modification of dicom objects:
 --modifypatid:patid,file Change patid of given file
 --anonymize:patid,file Anonymize given file
 --modifystudy:p,st,script Change patient or study
 --modifyseries:p,se,scrip Change series
 --modifier:p,st,se,so,ch,s Change(ch=1)/copy pat/st/ser/sop
 --modifyimage:file,script Change single image (filename passed)
 --mergestudy:uid,uid,.. Start merging studies with given studyuids
 --mergestudyfile:file Use to process all files to merge
 --mergeseries:uid,uid,.. Start merging series with given seriesuids
 --mergeseriesfile:file Use to process all files to merge

 --attachanytopatient:any,sample Modify uids to attach any object to
 --attachanytostudy:any,sample patient|study|series in sample file
 --attachanytoseries:any,sample Do not attach same at different levels
 --attachrtplantortstruct:plan,struc Attach rtplan to rtstruct

Maintenance options:
 --initializetables: Clear and create database
 --initializetables:1 Clear and create database without indices
 --initializetables:2 Clear and create worklist database
 --regen: Re-generate entire database
 --regendevice:device Re-generate database for single device
 --regendir:device,dir Re-generate database for single directory
 --regenfile:file Re-enter given file in database
 --makespace:# Delete old patients to make #MB space
 --quit: Stop the server
 --safequit: Stop the server when not active

Logging options:
 --debuglog_on:file/port Start debug logging
 --log_on:file/port/pipe Start normal logging
 --debuglevel:# Set debug logging level
 --display_status:file Display server status
 --status_string:file Display status string of submit operation
 --checklargestmalloc: Estimates DICOM object size limit
 --get_freestore:dev,fmt Report free #Mb on device
 --testmode:# Append # to dicom filenames
 --echo:AE,file Echo server; show response

Configuration options:
 --get_param:name,fmt Read any parameter from DICOM.INI
 --get_ini_param:name,fmt Read any parameter from DICOM.INI
 --get_ini_num:index,fmt List any entry from DICOM.INI
 --get_ini:fmt List all entries from DICOM.INI
 --put_param:name,value Write any parameter to DICOM.INI
 --delete_param:name Delete any parameter from DICOM.INI
 --read_ini: Re-read all parameters from DICOM.INI
 --get_amap:index,fmt List any entry from ACRNEMA.MAP
 --get_amaps:fmt List all entries from ACRNEMA.MAP
 --put_amap:i,AE,ip,p#,cmp Write entry in memory for ACRNEMA.MAP
 --delete_amap:index Delete entry in memory for ACRNEMA.MAP
 --write_amap: Write ACRNEMA.MAP from memory to disk
 --read_amap: Re-read ACRNEMA.MAP from disk to memory
 --get_sop:index,fmt List any accepted service class UID
 --put_sop:index,UID,name Write/add accepted service class UID
 --delete_sop:index Delete accepted service class UID
 --get_transfer:index,fmt List any accepted transfer syntax
 --put_transfer:in,UID,nam Write/add accepted transfer syntax
 --delete_transfer:index Delete accepted transfer syntax
 --get_application:idx,fmt List any accepted application UID
 --put_application:i,U,n Write/add accepted application UID
 --delete_application:inde Delete accepted application UID
 --get_localae:index,fmt List any accepted local AE title
 --put_localae:in,AE,name Write/add accepted local AE title
 --delete_localae:index Delete accepted local AE title
 --get_remoteae:index,fmt List any accepted remote AE title
 --put_remoteae:in,AE,name Write/add accepted remote AE title
 --delete_remoteae:index Delete accepted remote AE title
 --get_dic:index,fmt List any dicom dictionary item
 --get_sqldef:level,in,fmt List any database field definition

Communication options:
 --addimagefile:file,patid Copy file into server, optionally new patid
 --addlocalfile:file,patid Copy local file into server, opt. new patid
 --loadanddeletedir:dir,patid Load folder and delete its contents
 --loadhl7:file Load HL7 data into worklist
 --dump_header:filein,fileout Create header dump of file
 --forward:file,mode,server Send file with compr. mode to server
 --grabimagesfromserver:AE,date Update this server from other
 --prefetch:patientid Prefetch all images for improved speed
 --browsepatient:searchstring Select patient in windows GUI
 --submit:p,s,s,s,target,pw,scr Immediate sftp submit of data
 --submit2:p,s,s,s,target,c,scr Immediate submit with command line c
 --export:p,st,ser,sop,file,scr Immediate process and zip/7z data
 --scheduletransfer:options Background sftp transfer as above

Test options:
 --genuid: Generate an UID
 --changeuid:UID Give new UID as generated now or before
 --changeuidback:UID Give old UID from one generated above
 --checksum:string Give checksum of string
 --testcompress:file Enter file in server with many compressions
 --clonedb:AE Clone db from server for testing

Conversion options:
 --convert_to_gif:file,size,out,l/w/f Downsize and convert to mono GIF
 --convert_to_bmp:file,size,out,l/w/f Downsize and convert to color BMP
 --convert_to_jpg:file,size,out,l/w/f Downsize and convert to color JPG
 --convert_to_dicom:file,size,comp,f Downsize/compress/frame DICOM
 --extract_frames:file,out,first,last Select frames of DICOM file
 --count_frames:file report # frames in DICOM file
 --uncompress:file,out Uncompress DICOM
 --compress:file,mode,out Compress DICOM to mode e.g. J2
 --wadorequest:parameters Internal WADO server

Database options:
 --query:table|fields|where|fmt|file Arbitrary query output to file
 --query2:tab|fld|whe|fmt|max|file Same but limit output rows to max
 --patientfinder:srv|str|fmt|file List patients on server
 --studyfinder:srv|str|fmt|file List studies on server
 --seriesfinder:srv|str|fmt|file List series on server
 --imagefinder:srv|str|fmt|file List images on server
 --serieslister:srv|pat|stu|fmt|file List series in a study
 --imagelister:srv|pat|ser|fmt|file List (local) files in a series
 --extract:PatientID = 'id' Extract all tables to Xtable.dbf
 --extract: Extract patient dbase table to XA..
 --todbf:folder|table|query|sort|max Convert query result all fields to dbf
 --addrecord:table|flds|values Append record, values must be in ''
 --deleterecord:table,where Delete record from table
For DbaseIII without ODBC:
 --packdbf: Pack database, recreate memory index
 --indexdbf: Re-create memory index

Archival options:
 --renamedevice:from,to Rename device in database
 --verifymirrordisk:device Verify mirror disk for selected device
 --testimages:device Test read all images on device
 --movedatatodevice:to,from Move patients from one device to another
 --moveseriestodevice:to,from Move series from one device to another
 --selectlruforarchival:kb,device Step 1 for archival: to device.Archival
 --selectseriestomove:device,age,kb Step 1 for archival: to device.Archival
 --preparebunchforburning:to,from Step 2 for archival: moves to cache
 --deletebunchafterburning:deviceto Step 3 for archival: deletes from cache
 --comparebunchafterburning:deviceto Part step 3 - compare jukebox to cache
 --restoremagflags: Undo archival sofar

Scripting options:
 --lua:chunk Run lua chunk in server, wait to finish
 --luastart:chunk Run lua chunk in server, retn immediate
 --dolua:chunk Run lua chunk in this dgate instance
 --dolua:filename Run lua file in this dgate instance

APPENDIX 6. Configuration Files and Discussion

7.1 AE Title/Presentation Address Mapping

The Local AE Title is configurable by the user by editing the dicom.ini file via the
"Configuration" page of the Conquest DICOM server.

The following fields are configurable for this AE (local):

 Local AE Title
 Listening TCP/IP Port (port 5678 is default)
 Query & Retrieve Information Model.
 SQL Data source and databases.

The following fields are configurable for every remote DICOM AE:

 Remote AE
 Remote TCP/IP Port
 Remote IP Address
 Compression mode

7.2 dicom.ini

This file is placed in the same directory as the executable (e.g., c:\dicomserver). It specifies the
configuration of the MicroPACSMain DICOM AE. It is written automatically by the Conquest
DICOM server upon installation and when changing the configuration (use the "Save
configuration" button on the "Configuration" page). Editing it by hand is generally not
necessary or advised for beginners. Below is the simplified version generated by 1.4.19c.

This file contains configuration information for the DICOM server
Do not edit unless you know what you are doing

[sscscp]
MicroPACS = sscscp

Network configuration: server name and TCP/IP port#
MyACRNema = CONQUESTSRV1
TCPPort = 5678

Host, database, username and password for database
SQLHost = localhost
SQLServer = C:\software\dicomserver\gui\Data\dbase\conquest.db3
Username =
Password =
SqLite = 1
DoubleBackSlashToDB = 0
UseEscapeStringConstants = 0

Configure server
ImportExportDragAndDrop = 1
ZipTime = 05:
UIDPrefix = 1.2.826.0.1.3680043.2.135.736036.74015798

EnableComputedFields = 1

FileNameSyntax = 4

Configuration of compression for incoming images and archival
DroppedFileCompression = un
IncomingCompression = un
ArchiveCompression = as

For debug information
PACSName = CONQUESTSRV1
OperatorConsole = 127.0.0.1
DebugLevel = 0

Configuration of disk(s) to store images
MAGDeviceFullThreshHold = 30
MAGDevices = 1
MAGDevice0 = C:\dicomserver\data\

Some explanation of the most basic options follows here:

MyACRNema. Application Entity (AE) title. Edit it here if the GUI does not accept the
character you would like to use, such as an underscore.

TCPPort. IP port on which the server listens. The default is 5678. If this port is occupied the
server does not start. It may be set to an arbitrary value, as long as other servers know it.

SQLHost. Name of host computer with SQL server. Only used in Postgres and MySQL mode.

SQLServer. Name of ODBC data source, path to directory with DBF database files in case the
built-in DbaseIII driver is used, filename and path of the database file for SqLite, or name of
database in MySQL mode. Empty for NULL driver.

Postgres. Windows and Linux code is included to use a PostgresSQL database. Under Linux,
recompiling the server with –DPOSTGRES and setting this flag to 1 will enable the Postgres
driver. On windows, Postgress client DLL's (libpq.dll, msvcr71.dll, libxslt.dll, libxml2.dll,
libintl3.dll, libiconv2.dll, libeay32.dll, krb5_32.dll, and k5sprt32.dll) must be accessible for
Postgres to work. NOTE; a 64 bits Postgres access DLL is included with the release. The 32
bits Postgres DLL's are not redistributed with the windows server release. Default it is 0.

MySQL. Windows code is included for native access to a MySQL database. Setting this flag to
1 will enable the MySQL driver. Correct versions of the mysql DLL's (Windows only) are
redistributed with the windows server release. For 64 bits, the DLL should be named
libmysql64.dll. Default it is 0.

SqLite. Windows/Linux code is built-in to create and access a SqLite database. Setting this
flag to 1 will enable the SQLite driver. Default it is 1.

SQLiteStartup. SQL statement run on opening a SqLite database, defaults to "PRAGMA
synchronous=OFF" as it was (1.4.19c).

DoubleBackSlashToDB. If this value is 1, strings sent in queries and updates will have a \

replaced by \\. This option must be set to 1 for MySQL and PostGres and to 0 for other SQL
servers. The built in dbase driver accepts both settings.

UseEscapeStringConstants. If this value is 1, strings sent in queries and updates will have an
E prepended when escape characters are used. This option must be set to 1 for recent versions
of PostGres and to 0 for other SQL servers. The built in dbase driver accepts both settings.

ImportExportDragAndDrop. If this flag is set, files dropped on the GUI to load into the
server (that are processed with dgate – addimagefile:), pass through import and export
converters. Default it is set to 1 in 1.4.19. Conquest addition.

ZipTime. Time in hh:mm:ss (or part thereof) at which log files are zipped to reduce disk space
(Windows only). Log files are zipped daily. Set to e.g., ‘invalid’ to disable zipping. Default
value: ’05:’. Conquest addition.

UIDPrefix. Prefix for unique identifiers generated by the server. These are used for
anonymizing or changing Patient ID of images and for the print server. When the server is first
installed, a unique prefix is generated automatically (1.2.826.0.1.3680043.2.135.Date.Time).
Conquest addition.

EnableComputedFields. If this flag is set to 1, queries on items like 'Number of Study Related
Instances' will return data: for each query result it will the query the database again to count the
number of items below that one. Default to 1 since 1.4.16.

FileNameSyntax. Determines name of stored files, default 3. May be changed at any time
depending on the requirements of an application that wants to read the files directly. Only
affects newly stored images. Modes higher than 3 accept IODs without image or series number
and are therefore suited for DICOM-RT. Options 3 and 4 force use of the cleaned PatientID as
patient directory name, making sure that only a single directory is made for each unique patient
ID. Option 5 uses the patient name as directory name. Options 6 to 9 provide several frequently
used DICOM directory structures. Modes 4, 8 and 9 store images in (the slower to read)
standard chapter-10 DICOM format. DICOM-Works users might like mode 8 or 9 best. See
also note below. Conquest addition.

0 (original):
filename = ID[8]_Name[8]\Series#_Image#_Time.v2

1 (safer version of original):
filename = ID[8]_Name[8]\Series#_Image#_TimeCounter.v2

2 (include series UID in filename to ensure names sort by series):
filename = ID[8]_Name[8]\Seriesuid_Series#_Image#_TimeCounter.v2

3 (Uses patient ID as directory name and sets DICOM-RT required flags):
filename = ID[16]\Seriesuid_Series#_Image#_TimeCounter.v2

4 (same as 3, but data is stored in chapter 10 format):
filename = ID[16]\Seriesuid_Series#_Image#_TimeCounter.dcm

5 (sets DICOM-RT required flags, uses untruncated patient name as directory):
filename = Name\Seriesuid_Series#_Image#_TimeCounter.v2

6 (standard DICOM directory structure starting at patient root):
filename = ID[32]\Studyuid\Seriesuid\Imageuid.v2

7 (standard DICOM directory structure starting at study root):
filename = Studyuid\Seriesuid\Imageuid.v2

8 (standard patient root DICOM directory structure in chapter 10 format):
filename = ID[32]\Studyuid\Seriesuid\Imageuid.dcm

9 (standard study root DICOM directory structure in chapter 10 format):
filename = Studyuid\Seriesuid\Imageuid.dcm

10(all files in one directory)
filename = Images\Imageuid.dcm

11(patient name as directory, UIDS as subdirectories)
filename = Name\StudyUID\SeriesUID\Imageuid.dcm

12(patient name_id as directory, modality_studyid\series\sop.dcm)
filename = Name_ID\Modality_StudyID\ SeriesID\Imageuid.dcm

Here: \ is a directory separator, ID[N] is the cleaned patient ID truncated to N characters, Name[N] is the cleaned
patient name truncated to N characters, Series# is the series number, Image# is the image number, Studyuid is the
study UID, Seriesuid is the series UID, Imageuid is the Image UID, Time is the number of elapsed seconds since
1970 at the time the file is first written, and Counter is a 4 digit counter that in incremented for each stored file.

Note: FileNameSyntax may also be string containing % that is treated as flexible filenamesyntax.
e.g., %id\%studyid\%seriesid\%sopuid.dcm.
This string may contain:

%name=(0010,0010),
%id=(0010,0020),
%modality=(0008,0060),
%studyid=(0020,0010),
%studyuid=(0020,000D),
%seriesid=(0020,0011),
%series=(0020,0011) with 4 digits,
%seriesuid=(0020,000E),
%sopuid=(0008,0018),
%imagenum=(0020,0013),
%image=(0020,0013) as 6 digit integer,
%imageid=(0054,0400),
%studydesc=(0008,1030),
%time,
%counter = (4 digit hex),
%calledae,
%callingae,
%studydate,
%date (current date in yyyymmdd).

Any of these items can be followed by e.g., [0,3] which is a substring operator, e.g., %studydate[0,3]
gives the year, %studydate[4,5] gives the month. Also you can use parameter %vggggg,eeee to read any
dicom element to be used in generating the filename. For the syntax of the %v option (e.g., to read items
in a sequence), see the description of ImportConverters. Any other text is treaded literally – be careful to
use only characters allowed in filenames plus the correct path separator: \ for Windows, and / for Linux.

Since 1.4.17, FilenameSyntax may be a lua expression (call an external file for full control):
FilenameSyntax=lua:Data.SopInstanceUID..'.dcm' -- or:
FilenameSyntax=lua:dofile('makefilename.lua')

DroppedFileCompression.
For more information regarding compression/decompression and how to use these values, see
section 7.7 Compression Configuration

Files dropped into the server will optionally be compressed, decompressed and/or
recompressed. Supported values are (expected compression ratio stated between brackets):

as = store images as is, e.g. without changing the compression.
is = store images as is, e.g. without changing the compression.
un = uncompress NKI and/or JPEG compressed images
n1 = fast NKI private loss-less compression mode 1 (50%)
n2 = as n1 but with CRC check for errors (50%)
n3 = fast NKI private loss-less compression mode 3 (40%)
n4 = as n3 but with CRC check for errors (40%)
j1 = JPEGLossless (retired, use J2 instead) (33%)
j2 = JPEGLosslessNH14 (33%)
j3 = JPEG baseline 1 (8 bit) lossy (8%)
j4 = JPEGExtended2and4 lossy (15%)
j5 = JPEGSpectralNH6and8 lossy (15%)
j6 = JPEGFulllNH10and12 lossy (14%)
j3NN = JPEG baseline 1 (8 bit) quality as defined (60..95 suggested)
j4NN = JPEGExtended2and4 quality as defined (60..95 suggested)
j5NN = JPEGSpectralNH6and8 quality as defined (60..95 suggested)
j6NN = JPEGFulllNH10and12 quality as defined (60..95 suggested)
js = Lossless JPEGLS (30%)
j7 = Lossy JPEGLS (20%)
j7NN = Lossy JPEGLS, quality defined (20%)
jk = Lossless JPEG2000 (30%)
jl = Lossy JPEG2000 (20%)
jlNN = Lossy JPEG2000 bitrate as defined (1..20 suggested) (
nj = Highest NKI mode; but leaves JPEG as is (variable)
uj = Uncompressed; but leaves JPEG as is (variable)
k1 = Downsize image>1024 pixels wide/high to 1024 (variable)
k2 = Downsize image>512 pixels wide/high to 512 (variable)
k4 = Downsize image>256 pixels wide/high to 256 (variable)
k8 = Downsize image>128 pixels wide/high to 128 (variable)
ka = Downsize image>64 pixels wide/high to 64 (variable)
kb = Downsize image>32 pixels wide/high to 32 (variable)
kc = Downsize image>16 pixels wide/high to 16 (variable)
s0 = Run CompressionConverter0 (n/a)
..
s9 = Run CompressionConverter9 (n/a)

JPEG compression uses. Note that JPEG2000 compression is quite slow. Compression is
transparent for DICOM connections, i.e., data is decompressed or compressed if required before
transmission. See also LossyQuality which can be overruled by appending NN to the lossy

compression name. Default=’un’; Conquest addition.

IncomingCompression. Images stored through DICOM communication into the server will
optionally be compressed, decompressed and/or recompressed. Supported values are the same
as for DroppedFileCompression with the addition of compression ‘vX’=do not store images at
all (only useful for DICOM caches). Note that compression is transparent for DICOM
connections, i.e., data is decompressed or compressed if required for transmission. Since
version 1.4.7, if the called AE title looks like SERVER~xx (note, the total AE length must
remain less than 16), then xx will override IncomingCompression. Default=’un’; Conquest
addition.

ArchiveCompression. Files prepared for archival (using the dgate –ab option) will optionally
be compressed, decompressed and/or recompressed. Supported values are the same as for
DroppedFileCompression. Prior to version 1.4.4 the amount of disk space to be archived was –
incorrectly- computed before (re)compressing the images. Now OK. Default=’as’; Conquest
addition.

PACSName. Name uses in log files

OperatorConsole. IP address of GUI, typically 127.0.0.1

DebugLevel. Only active when debug logging is enabled. 0: Basic debug log (default). 1:
Dump incoming dicom command objects (and show memory usage on Linux). Also dump
worklist query results. 2: Also dump incoming query data objects. 3 and 4 dump even more
such as database queries. Conquest addition.

MAGDeviceFullThreshhold. If the disk space of the MAG device is less than this amount of
MB, conquest stops storing images on this MAG device. New in 1.4.16. Default value is 30.

MAGDevices. Number of disk devices used for storage.

MAGDevice0. Folder for first disk device, ends with \.

Advanced storage options are:

MAGDeviceThreshhold. If the disk space is less than this amount of MB, one or more least
recently used patients are automatically deleted until the free disk space is about 5 MB larger. If
set to 0, no deletion occurs (default).

IgnoreMAGDeviceThreshHold. If set, disk space checking is not performed before writing
DICOM files into the database. New in 1.4.16. Default 0.

NightlyCleanThreshhold. If at 01:00 at night the disk space is less than this amount of MB,
one or more least recently used patients are automatically deleted until the free disk space is
about 5 MB larger. If set to 0, no deletion occurs (default). Uses dgate option –ff. Since 1.4.16
also works for service and linux, if the logging is to a file. Conquest addition.

NightlyMoveThreshhold. If at 02:00 at night the disk space of MAG0 is less than this amount
of MB, one or more least recently changed patients are automatically moved (and optionally

compressed using ArchiveCompression) to the selected MAG device (Windows only). The
amount to move is computed such that the free disk space becomes about the value of this
parameter in MB. If set to 0, no moving occurs (default). Uses dgate options –as and -am. Since
1.4.17 also works for service and linux, if the logging is to a file. Conquest addition.

NightlyMoveTarget. If at 02:00 at night the disk space is less than NightlyMoveThreshhold
MB, patients are moved from MAG0 to this location (e.g. MAG1). Note: a mirror of the target
will not be used. Uses dgate option –am. Conquest addition.

MIRRORDevices, MIRRORDevice0, etc. Each MAG device optionally has a mirror device
where a duplicate of the image is stored for safety. Since version 1.4.8, if the mirror copy fails,
it will be automatically retried using data stored in files like ‘CopyFailures5678’, where 5678 is
the server port #. This file needs to be manually deleted to stop endless retries. Mirror copies
are performed asynchronously and are queued in-memory in a queue with QueueSize entries.
Conquest addition.

CACHEDevices, CACHEDevice0, etc. A CACHE device is used to temporarily store data that
is made ready for archival on one of N jukebox devices. A cache device name must contain two
%d fields: for example: a CACHEDevice "x:\cache\cd%02d_%04d" will contain cache
directories with names like "cd00_0001". This example is for jukebox device 0, and CD number
1. Image data may be moved to CACHE storage using dgate command line options –as and –ab.
Conquest addition.

JUKEBOXDevices, JUKEBOXDevice0, etc. A JUKEBOX device is used to access data in a
CD-ROM jukebox. A jukebox device name must contain one %d fields: for example: a
JUKEBOXDevice "y:\jukebox\cd00_%04d" will be used to access CD’s though directories
with names like "cd00_0001". This example is for jukebox device 0, and CD number 1. Image
data on JUKEBOX devices must be copied (burned) from CACHE devices with external
software. Using dgate command line options the data can be prepared (-as), copied to cache (-
ab), {then burn it}, verified (-ac) and the source images deleted (-ad). Conquest addition.

GUI options are:

KeepAlive. If this value is not 0, server is tested every KeepAlive seconds and restarted if it
doesn’t respond (Windows only). Usually not necessary. Works again from version 1.4.5.
Conquest addition.

LargeFileSizeKB. In the Windows GUI, large DICOM files are not automatically displayed in
the browser. This parameter set the threshold (default 4096). Conquest addition.

ExternalViewer. Name of executable that can be started from the browser (Windows only) as
an external viewer (through the image pop-up menu). The filename of the slice is passed as only
argument. Conquest addition.

DemoViewer. Name of executable to be called for each incoming slice (Windows only). The
filename of the slice, calling AE and called AE are passed as arguments. Conquest addition.

DemoCopy. Name of directory (including trailing \) to store a copy of each incoming slice

(Windows only). The filename of the slice is changed to the calling AE. Conquest addition.

Headerbmp. name of optional bitmap file to be displayed at top of a printout from the built-in
printer server. It is scaled to the width of the page.

Footerbmp. name of optional bitmap file to be displayed at bottom of a printout from the built-
in printer server. It is scaled to the width of the page.

Backgroundbmp. name of bitmap file to be displayed in the background a printout from the
built-in printer server. It is stretched to the size of a page excluding optional header and footer.

Web options are:

WEBReadOnly. If set to 1, web users cannot write anything. Default 0.

TempDir. Is mainly used to store temp files in the cgi interface (when dgate.exe is run from a
web server).

Advanced options are:

TruncateFieldNames. DBASE files do not allow field name lengths in excess of 10 characters.
This option truncates the names. Leave this option at 10, since the Delphi user interface, the
WEB interface, and some of the archival options expect truncated names. Conquest addition.

MaxFieldLength. DBASE files do not accept field lengths in excess of 254 characters. This
options overrules the setting in DICOM.SQL. May be changed or removed for SQL server but
this is not necessary. Conquest addition.

MaxFileNameLength. If set, the filenames for the DICOM slices will be truncated (removing
the starting characters of, typically, the series instance UID) to the specified length. Useful
when files are to be recorded on compact disc (which often have a filename limit of 64
characters). Must be left at its default of 255 for FileNameSyntax values>6. Conquest addition.

FixPhilips. If set (default it is NOT set since version 1.4.6), a 10 digit PatientID (as a Philips
Expander CT scanner produces) is stripped of leading zeros in some cases. See A.1.3. Conquest
addition.

FixKodak. If set (default it is NOT set), a 8 digit PatientID (as a Kodak RIS produces) is
stripped of a leading zero in some cases. See A.1.3. Conquest addition.

EnableReadAheadThread. When set (default), up to 5 slices are read-ahead during any C-
Move request. If set to a higher value, the number of pre-read slices may be increased. This
option typically doubles the image retrieval speed, but increases processor load. Therefore it is
may be disabled here.

Prefetcher. If set, queries will start prefetching all images of the patient into disk cache. A
subsequent move of 2 or more images will stop the prefetching. Causes high processor load but
may speed up server operation on dedicated hardware with lots of RAM. Default 0.

LRUSort. Normally, patients entered into the server's database first will be deleted or archived
first. By setting this option to StudyDate, patients with the oldest last studydate will be selected
for deletion or archival first. Can also be set to PatientBir, or AccessTime. Default "".

AllowTruncate. Comma separated list of database fields (without spaces) that may be entered
truncated into the database giving a warning not an error. Default "".

IgnoreOutOfMemoryErrors. If set to 1, emulates 1.4.12 behavior: out of memory allocations
are logged but ignored causing possible data loss. If set to 0 (default), an out of memory
condition will lead to a shutdown of the server.

NoDICOMCheck. If set to 1, emulates 1.4.12 behavior: parsing DICOM errors are ignored
causing possible server crashes on invalid or non-dicom files. If set to 0 (default), parsing errors
will lead to rejection of the incoming file or message.

StorageFailedErrorCode. This is the error code sent to all DICOM systems when storage
fails. Default 272 = 0x110 = processing failed.

PatientQuerySortOrder, StudyQuerySortOrder, SeriesQuerySortOrder,
ImageQuerySortOrder. Determines order in which images and query order results are sent.
Must contain one or more comma separated exact (truncated) table.field names like:
‘dicompatients.patientid’ or ‘dicomstudies.studydate, dicomseries.seriesnumb’. Does not
function for DBF without ODBC.

PackDBF. If set, the internal DbaseIII driver will pack the database at startup. Is very slow for
large archives, default OFF from version 1.4.5. Conquest addition.

IndexDBF. If set, the internal DbaseIII driver will create an internal memory index on
patientID at startup. The value determines the amount of MB allocated for new database records
(i.e., added later). Default is "10" = ON with 10 MB spare index space. Index generation takes
about 1 minute per million images (during index generation the server cannot find not yet
indexed records and the server runs in read only mode). However, this option speeds up simple
queries (including PatientId, SeriesInstanceUID and.or StudyInstanceUID) enormously for
large archives. New since version 1.4.5. Conquest addition.

LongQueryDBF. Queries with the internal DbaseIII driver taking longer than this value in ms
will be reported to the user interface for troubleshooting purposes. Default 1000 ms. New since
version 1.4.5. Conquest addition.

WorkListMode. WorkListMode=0: (default) Disabled. WorkListMode=1: The
AccessionNumber is looked up in the local WorkList database, if it is found, any element in the
DICOM object that is also present (and non-NULL) in the WorkList database, will be replaced
by the value from the WorkList database. These changes are made both in the database and in
the image that is stored on disk. WorkListMode=2: As mode 1, but the image will be refused if
the AccessionNumber is not found. Note that there is no DICOM method of filling the worklist
database. Use drag and drop to enter HL7 files into the server. Conquest addition since version
1.4.9.

WorkListReturnsISO_IR. If this items is set to NNN (default it is 100) worklist queries will
report character set ISO_IR NNN. Replaces WorkListReturnsISO_IR_100 which is a binary
flag.

AllowEmptyPatientID. If set 1 (default it is 0), images with empty patient ID are processed as
follows: if the patient ID is not set, it is looked up from the database for the corresponding
study. Conversely if AllowEmptyPatientID=1 and there is no patient ID in the
database but there is in the image, the database is updated. If AllowEmptyPatientID is set to 0
(default), a missing PatientID is replaced by “00000000”.

WatchFolder. If set, files entered in this folder are automatically loaded into the server and
deleted. Has the same function as the incoming folder on MagDevice0.

SendUpperCaseAE. If set, the called AE title is always sent UPPERCASE

Virtual server options are:

VirtualServerFor0. Queries and move requests sent to this server are forwarded to the given
AE titles in VirtualServerFor0..9. The AE titles must be known in ACRNEMA.MAP. The client
will effectively see all data of the listed servers and this one merged – at the cost of query
speed. The merging occurs during each query in memory. When moves are performed, images
retrieved from the listed servers are stored locally (i.e., the server functions as a DICOM cache).
The images are, however, automatically deleted when CacheVirtualData is 0. Since version
1.4.12, server names may be appended by ‘,FIXKODAK’ to enabled filtration of extraneous 0’s
from outgoing queries and their results (see fixkodak). Since 1.4.16, server names may also be
appended with ',CACHESERIES' or ',CACHESTUDIES'. In this case, repetitive queries in the
IMAGE table are cached locally at SERIE or STUDY level, under the following filenames:
MAG0\printer_files\querycache\YYYY\MMDD\xxxxxxxx.query and
MAG0\printer_files\querycache\YYYY\MMDD\xxxxxxxx.result. This option typically makes
query access to slow DICOM servers much quicker. Since 1.4.16, server names may also be
appended with ',NONVIRTUAL' to stop loops or double accesses by cascaded virtual servers
(the virtual server needs to be 1.4.16 up to respond to this command). Conquest addition.

VirtualServerPerSeries0. If set to N, fetch entire series in VirtualServer0 when more than N
images are requested. Otherwise (default) fetch image by image, using multiple UID matching
if possible. Conquest addition (experimental).

CacheVirtualData. If set, data passed through for other servers is kept (allowing the conquest
server to act as a DICOM cache). When this option is cleared, multiple simultaneous access to
the same data can give problems, as one access may be in the process of deleting images while
another one thinks they are there. Default is set. Conquest addition (experimental).

OverlapVirtualGet. If set other than 0, data coming in for other (virtual) servers is transmitted
directly through to clients while it is being recieved. The value determines how many objects
are kept in memory. Default is 0. To enable it set it to 5 or the same value as
EnableReadAheadThread. Conquest addition (experimental).

Communication options are:

TCPIPTimeOut. TCP/IP timeout in seconds, default 300s. May be made longer when using
very slow network links. Conquest addition.

FailHoldOff. After an export or mirror copy failure (e.g., because the receiving host is down),
new requests are deferred immediately for this amount of seconds, default 60. Conquest
addition.

RetryDelay. By this amount of seconds after an export or mirror copy failure, the deferred
operations are retried, default 100. Version 1.4.11 fixes a problem where unaccepted images
were retried forever. Conquest addition.

RetryForwardFailed. If this flag is set, any failed forward will be retried. Default it is is NOT
set, to avoid endless retries. However, setting it to 1 avoids losing one image in case a server
dies in the middle of a C-STORE. Conquest addition.

RetryForwardRemoteDICOMError. If this flag is set, a Remote DICOM Error is reason to
retry (1.4.19c).

QueueSize. This is the size (in entries) of the in-memory queues for mirror copies,
exportconverters, and delayed forward operations. Default 128. Each entry takes 1.5k (per
export converter) or 2k (for the mirror copy queue). Increase it's size if a backlog of
exportconverters slows down your incoming data porcessing. Conquest addition.

MaximumExportRetries. If other than 0, exportconverters give up after this number of retries,
default 0. Conquest addition.

MaximumDelayedFetchForwardRetries. If other than 0, converters forward patient to,
forward study to, forward series to and preretrieve give up after this number of retries, default 0.
Conquest addition.

ForwardCollectDelay. Converters forward patient to, forward study to, forward series to and
preretrieve wait for a time to allow incoming data (e.g., a study) to be fully collected before it is
retransmitted. This value specifies the length of the wait in seconds, default 600. Conquest
addition.

LossyQuality. Default compression quality/bitrate passed to JPEG and JPEG2000 compressors.
May be overruled by appending NN to je compression name (e.g., JL20). Default 95. For JPEG
try 70-95 for JPEG2000 try 1..20. Conquest addition since version 1.4.17.

Forwarding options are:

ExportConverters, ExportConverter0, ExportModality0, ExportStationName0,
ExportCalledAE0, ExportCallingAE0, ExportFilter0, etc.
Use these options to turn a DICOM server into a fully automatic image format converter or for
image forwarding. The item ExportConverters determines the number of export converters
used: a thread is started for each.

- An export converter is an external or internal program that is run after an incoming
image slice of prescribed Modality, StationName, CalledAE and CallingAE (*
matches anything, this is the default value) is stored in the database. Note that an
empty string as value is not the same as ‘*’, an empty string will only match, e.g., an
empty Modality in the DICOM data. Since 1.4.12, also e.g. "RT*" can be used for
matching.

- Files that match all items above are tested against an optional SQL statement in
ExportFilterN, e.g., ImageNumber LIKE '1%' matches all images with an image
number starting on 1. All fields in the database can be used in the SQL statement
with the exception of PatientID (ImagePat may be used instead), StudyInstanceUID
and SeriesInstanceUID. Since the SQL filtering is relatively slow it is advised to also
use the previous options. Note: When the built-in dBaseIII driver is used, filter queries are
limited to fields in the de-normalized image table, and only queries like: "ImageNumber LIKE '1%'
and Modality = ‘MR’" are supported. Supported fields are listed in the DICOMImages definition in
dicom.sql, while only the "and" keyword is supported. Note that spaces around the " = " are
obligatory!

- There are four converter options.
1) The file name of a matching slice can be passed as (only) argument to an external
program specified by ExportConverterN (must be an exe file). For example, to pass
all (512x512 CT images made on CT_SCANNER send by CONQUESTSRV2 to
CONQUESTSRV1) to myconverter.exe (note that spaces around ‘=’ are required,
also in ExportFilterN!):

ExportConverters = 1
ExportModality0 = CT
ExportStationName0 = CT_SCANNER
ExportCalledAE0 = CONQUESTSRV1
ExportCallingAE0 = CONQUESTSRV2
ExportStationName0 = CT_SCANNER
ExportFilter0 = Rows = 512 and Columns = 512
ExportConverter0 = myconverter.exe

2) The ExportConverterN string may be written as ‘forward to AE’, or ‘forward
compressed as .. to AE’ to use internal code for forwarding an image to another
server (AE must be known to this server or may be written as ip:port). The ‘forward
compressed as .. to’ option may use any style of NKI or JPEG compression using the
same values as defined for DroppedFileCompression. For example, to forward all
CT images to SERVER1 and forward all MR images using loss-less JPEG
compression to SERVER2:

ExportConverters = 2
ExportModality0 = CT
ExportConverter0 = forward to SERVER1
ExportModality1 = MR
ExportConverter1 = forward compressed as j2 to SERVER2

Since version 1.4.8, when an export fails, exports on that converter are blocked for
60 s (=FailHoldOff); while 100 s (=RetryDelay) after the last failure they will be
automatically retried based on data stored in files like ‘ExportFailures5678_0’
(where 5678=port number, 0=converter number). These files may sometimes need to
be deleted (the GUI asks so at startup) to stop endless retries. Version 1.4.11 fixes
endless retries for unaccepted images.

3) ExportConverterN may run a program using the following syntax (for example)
‘notepad %f’, where %f=filename, %m=modality, %s=stationname, %b=file base
name, %p=file path, %o=SOP instance UID, %u=CallingAE, %c=CalledAE,
%n=newline, %%=%, %Vxxxx,yyyy=dicom item from image, %i=patient ID,
%d=date and time. Each % variable can be appended with [first,last] to take a
substring, i.e., %i[0,1] = first 2 characters of patientid, or %i[,2] = last two
characters of patientid. For example, to use a hypothetical DICOM to bitmap
converter (a very good bitmap converter can be found in the OFFIS DICOM toolkit
DCMTK) for each incoming image sent from a DICOM system with StationName =
STATION1:

ExportConverters = 1
ExportStationName0 = STATION1
ExportConverter0 = dicomtobitmap %f c:\bitmaps\%b.bmp
or
ExportConverter0 = save bmp as c:\bitmaps\%b.bmp

4) Finally, the following exportconverters are hard-coded and do not start an
external program: ‘nop’: do nothing, 'copy %f to destination' (destination may be a
file or a directory, don’t forget the ‘to’), ‘write "string" to file’, ‘append "string" to
file’ (don’t forget the quotes around the string). See further the description of
ImportConverters. Use %n in the string to write a new-line for the latter two
options. For example, to copy all incoming slices to another directory and append
their filenames to a text file:

ExportConverters = 2
ExportConverter0 = copy %f to c:\incoming
ExportConverter1 = append "%f%n" to c:\incoming.txt

Export converters are executed asynchronously (they are queued in memory in a queue of
QueueSize length) but will somewhat slow down operation of the server. Since version 1.4.12c,
multiple export converters may be specified in one rule separated by ‘;’. These are processed in
sequence. See further ImportConverters for scripting language details and even more options.

Before version 1.4.12, each image was forwarded on a new association – causing problems on
some host systems. With version 1.4.12, new options have been added to change this behavior.
The flag ForwardAssociationLevel may have values [GLOBAL, SOPCLASS, PATIENT,
STUDY, SERIES, IMAGE]. Forwarders keep the association open as long as the UID at
ForwardAssociationLevel does not change. The default is IMAGE, creating a new association
for each image as before. By changing to more global settings more images are sent per
association. However, associations are always closed when a new image type [SOPCLASS] is
sent that was not sent before by this converter. After ForwardAssociationCloseDelay seconds
of inactivity (default 5), the association is closed. After ForwardAssociationRefreshDelay
seconds of inactivity (default 3600) the list of known sop classes is deleted. This latter option
avoids having to restart conquest when other servers change their capability.
ForwardAssociationRelease controls whether conquest just hangs up to link (=0) or does a
controlled close (=1, default). Conquest addition.

Scripting options are:

ImportConverters, ImportConverter0, ImportModality0, ImportStationName0,

ImportCalledAE0, ImportCallingAE0, etc.
Use these options to let a DICOM server (conditionally) modify elements of each incoming
image, reject images, generate specific log files, provide delayed forwarding and much more.
The item ImportConverters determines the maximum number of import converters that can be
used, it is however, not necessary to specify it explicitly.

An Import converter is an internal program that is run for each incoming image of
prescribed Modality, StationName, CalledAE and CallingAE (* matches anything,
this is the default value) and that typically will be used to change elements in the
image before it is stored in the server and/or forwarded. They run after
WorkListMode and FixKodak but before ExportConverters. Note that an empty
string as value is not the same as ‘*’, an empty string will only match, e.g., an empty
Modality in the DICOM data. ImportConverterN may for example set a VR in the
dicom image using the following syntax: set 0010,1001 to "%V0010,0020", where:

“” = “,
%m = modality,
%f = filename
%b = base file name
%p = file path
%s = stationname,
%o = SOP instance UID,
%i = patient ID,
%u = CallingAE,
%d = date and time,
%c = CalledAE,
%n = newline,
%t = tab,
%% = %,
%^ = ^,
%~ = ~,
%[= [,
%Vxxxx,yyyy = any dicom item from image,
%VPatientName = any dicom item from image called by name,
%V*gggg,eeee = an item in any sequence,
%V/gggg,eeee/gggg,eeee/etc = first item in a specified sequence,

 %V/gggg,eeee.N/gggg,eeee/etc = item N in a specified sequence,
%V(/gggg,eeee/gggg,eeee)gggg,eeee = an item in a dicom object, whose

SOPUid is specified in the () part,
%E = like %V but data is anonymized (new UID assigned),
%R = like %V but returned de-anonymized UID (reverse of %E),
%A = like %V but CRC32 of data is returned,
%QPxxxx,yyyy = item queried from patient db on patient ID (import converters only),

 %QSxxxx,yyyy = queried from study db on patient ID and study UID (idem),
%QExxxx,yyyy = queried from series db on patient ID, study UID, and series UID (idem),
%QWxxxx,yyyy = dicom item queried from worklist db on accession number (idem),
%QXxxxx,yyyy = replace item from tab separated file aliasfileQX.txt (format: old\tnew\n)
%x, %y, %z = general purpose variables.

Each % variable can be appended with [first,last] to take a substring, i.e., %i[0,1] =
first 2 characters of patientid, %i[,2] = last two characters of patient ID. A '^' may be
appended to convert the result to uppercase, and a ~ to convert it to lowercase. For
example, to change two VRs in each incoming image and reject any images acquired
in 2002:

ImportConverter0 = set 0010,1001 to "my string and date: %d"
ImportConverter1 = set 0010,1002 to "%V0010,0010^"
ImportConverter2 = ifequal "%V0008,0020[0,3]", "2002"; destroy

The following list illustrates all importconverter ‘I’, exportconverter ‘E’, or both
‘IE’ commands available for scripting. The parser is not very flexible: stay close to
the examples in terms of spacing and semicolons.

IE {command; command } command block
IE write "my string" to file.txt write file
IE append "date: %d" to file.txt append to e.g. log file
IE nop do nothing
IE nop any text %i do nothing but log shows text
IE prefetch delayed preread (cache) of patient from disk
IE preretrieve AE delayed collect of entire patient from AE
IE call file call file with ImportConverter strings, or script string
I file call file with ImportConverter strings, or script string
I file.lua call file with lua code
I file.lua(command) call file with lua code, command --> command_line
I file.lua(“command”) call file with lua code, command --> command_line
E executable call executable
IE lua “chunk” execute lua chunk
IE system command line make a call to windows or linux
IE return return from file, or same as stop
IE stop stop parsing this converter
IE silentstop stop parsing this converter, no message
I set xxxx,yyyy to "%V0010,0010" set VR (creates empty sequence if applicable)
I set xxxx,yyyy to nil delete VR
I set PatientID to "%VPatientName"set/get VR by name
I set xxxx,yyyy format “%%d” to .. set VR formatted (%%s, %%d, %%x, %%f, %%g)
I set xxxx,yyyy if "%V0010,0010" set VR if data
I set xxxx,yyyy.N/xxxx,yyyy to .. set VR in sequence (max one deep, may use names)
I set xxxx,yyyy.*/xxxx,yyyy to .. Add VR to sequence (max one deep, may use names)
I set x to "%QP0010,0010" set variable
I set y if "%x" set variable if data
I setifempty xxxx,yyyy to "hallo" set if VR empty (obsolete, not in sequences)
I setifempty xxxx,yyyy if "%x" set if VR empty and %x not
I setifempty z to "hallo" set only if z empty
I setifempty z if "%i" set only if z empty and %i not
I delete xxxx,yyyy delete VR
I newuids replace all UIDS
I newuids except replace all UIDS except gggg,eeee|gggg,eeee or UID
I newuids stage NAME replace all UIDS, but with separate keytable NAME
I fixkodak change patient ID from kodak to NKI format
I unfixkodak change patient ID from NKI to kodak format
I crop x1,x2,y1,y2 crop image
I tomono convert image to monochromo
IE save to filename.dcm save dicom image to file
IE save bmp to filename.bmp save bitmap image to file
IE save gif to filename.gif save gif image to file
IE save jpg to filename.jpg save jpeg image to file
IE save [bmp/gif/jpg] full syntax of above commands

level N
window N
frame N
size N
quality NN integer quality factor for jpg export only
gamma NN floating point gamma correction value
[to/as] filename

IE save frame N to filename save dicom file of single frame of multiframe object
IE mkdir directoryname make a directory (requires trailing / or \)

IE rm filename delete a file
I process with command the received slice is processed by an executable
I destroy image not stored at all
I destroy2 same as destroy but not logged
I reject as destroy, but reports error to sending server
I storage MAG1 set preferred storage area
I compression CC[nn] recompress object with mode CC quality nn
I virtualserver N set preferred virtual servers (only for query/moves)
I virtualservermask N set all preferred virtual servers (idem)
IE forward to AE see above
IE forward full syntax

[compressed as CC] optional, provide clauses in order
[to AE|host:port] required, provide clauses in order
[org AE] calling optional, provide clauses in order
[dest AE] called optional, provide clauses in order
[channel N] optional (I only) to keep connection open: N={0..19

or * means distribute channels automatically}
[script cmd] script to process data; must be last

IE forward patient to AE delayed forward of entire patient
IE forward study to AE delayed forward of entire study
IE forward series to AE delayed forward of entire series
IE forward [patient|study|series|image] forward command full syntax

[compressed as xx] set compression
[date yyyymmdd-yyyymmdd] filter absolute series date range (any study)
[now -ddd+ddd] filter series date range from now (any study)
[age -ddd+ddd] filter series date range from passed series (any study)
[modality mm] filter modality (any study)
[imagetype xxxx] filter image type (this study)
[seriesdesc xxxx] filter series description (this study)
[study xxx] filter studyUID (any series)
[series xxx] filter seriesUID (any study)
[sop xxxx] filter sop (any study)
[after NN] collect delay in seconds from last image
[org AE] calling AE
[dest AE] called AE
to AE destination
[script “....”] must be last: script to run on sent objects (“ optional)

IE get [patient|study|series|image] get command full syntax
[date yyyymmdd-yyyymmdd] (see above)
[now -ddd+ddd]
[age -ddd+ddd]
[modality mm]
[imagetype xxxx]
[seriesdesc xxxx]
[study xxx]
[series xxx]
[sop xxxx]
[after NN]

 from AE
[script “....”]

IE delete [patient|study|series|image] delete command full syntax
[date yyyymmdd-yyyymmdd] (see above)
[now -ddd+ddd]
[age -ddd+ddd]
[modality mm]
[imagetype xxxx]
[seriesdesc xxxx]
[study xxxx]

[series xxxx]
[sop xxxx]
[after NN]

IE submit [patient|study|series|image] secure ftp submit command full syntax
[target xxxx] username@machine:folder
[password xxxx]
[after NN]
[study xxx] filter studyUID (default current)
[series xxx] filter seriesUID (default current)
[sop xxxx] filter sop (default current)
[script “....”] must be last: script to anonymize
Note: calls submit.cq for every image if it exists.

IE submit2 [patient|study|series|image] submit using any tool command full syntax
[target xxxx] substituted in command line below
[command xxxx] command line string with %s=filename %s=target
[after NN]
[study xxx] filter studyUID (default current)
[series xxx] filter seriesUID (default current)
[sop xxxx] filter sop (default current)
[script “....”] must be last: script to anonymize
Note: calls submit.cq for every image if it exists.

IE merge study series in a study are merged
[modality mm] (any study)
[seriesdesc xxxx] (this study)
[after NN]
[script “....”] importconverter run on merged objects

IE process [patient|study|series|image] [after NN] [by command/file.lua] command_line
the executable command or lua file (passed
command_line as variable) is executed when
reception of the patient etc is complete.

IE testmode .1 controls appending of internal DICOM filename
IE copy file to file see above
IE defer defer ExportConverter until another time
IE ifnotempty "%i"; command if filled then command
IE ifempty "%V0010,0010"; nop if "" then ..
IE ifequal "string", "string2"; nop test equal
IE ifnotequal "string", "string2"; nop test not equal
IE ifmatch "string", "substring"; nop test match (allows substring = x*, *x, and *x*)
IE ifnotmatch "string", "substring" test not match (allows substring = x*, *x, and *x*)
IE ifnumequal "string", "string2" test numeric
IE ifnumnotequal "string", "string2" test numeric
IE ifnumgreater "string", "string2" test numeric
IE ifnumless "string", "string2" test numeric
IE ifnotempty "%i"; {nop; nop; } {} block (note ‘;’ use!)
IE ifequal "%V0008,0020[0,3]", "2002"; substring to test year
IE between "9", "17"; defer; test time in hours

Script strings are entered in dicom.ini as follows:

[scripts]
Test = nop test

Here is a real-life example of a useful exportconverter script in SERVER1:

exportconverters = 1
exportconverter0 = ifequal "%u","SERVER2"; stop; between "9", "17"; defer; forward to SERVER2

This script uses the commands 'ifequal "%u","SERVER2"; stop;' to ignore all data with calling
AE of 'SERVER2'. This will avoid any data from SERVER2 to be sent back to SERVER2
causing a potential loop. The commands "between 9 and 17; defer" cause the converter to wait
until after 17:00 before subsequent commands are processed using the retrying mechanism. The
last command forwards the data to SERVER2. Having a similar line in SERVER2 forwarding
to SERVER1 will cause both servers to synchronize after 17:00 without a loop.

Here is a much more elaborate sample that when it receives an RTPLAN for machine A2 will
forward the associated RTSTRUCT and CT to machine A2:

exportconverters = 1

exportconverter0 = ifnotequal "%m", "RTPLAN"; stop;
 ifnotequal "%V*300a,00b2[0,1]", "A2"; stop;
 forward to XVI_A2;
 get study modality CT from NKIPACS;
 get study modality RTSTRUCT sop %V/300c,0060.0/0008,1155 from NKIPACS;
 forward study series %V(/300c,0060/0008,1155)/3006,0010/3006,0012/3006,0014/0020,000e

to XVI_A2;
 forward study modality RTSTRUCT sop %V/300c,0060.0/0008,1155 to XVI_A2

QueryConverter0, WorkListQueryConverter0, RetrieveConverter0. Import converters that
work on the data object of queries or retrieve commands. Can also be used to trigger external
applications. Can read called (%c), calling (%u), and c-move destination for retrieve (in %s), as
well as all data in data object. Also allows programming of preferred virtual servers using the
virtualserver or virtualservermask commands. Experimental. Conquest addition.

RetrieveResultConverter0. Import converters that work on the dicom objects (images)
returned from any retrieve. Experimental. Conquest addition.

QueryResultConverter0. Import converters that work on the data records that result from any
query. Since 1.4.16. Conquest addition.

ModalityWorklistQueryResultConverter0. Import converters that work on the data records
returned from a modality worklist query. Since 1.4.16. Conquest addition.

MergeStudiesConverter0 and MergeSeriesConverter0. Import converters that work on data
being merged. Since 1.4.16. Conquest addition.

ArchiveConverter0. Import converters that work on data being archived. These should not be
used for logging as it modifies the images of set. Since 1.4.16. Conquest addition.

VirtualServerQueryConverter and VirtualServerQueryResultConverter. These import
converters allow modifying the operation of virtual servers. Since 1.4.17b. Conquest addition.

MoveDeviceConverter0. Import converters that work on data being moved from one device to
another. These should not be used for logging as it modifies the images of set. Since 1.4.16.
Conquest addition.

RejectedImageConverter0. Import converters that work on images rejected for storage, e.g.,
due to a database UID clash. Since 1.4.16. Conquest addition.

association. Lua script run on beginning each association.

endassociation. Lua script run on end of each association.

command. Lua script run for each DICOM command.

clienterror. Lua script run for each DICOM client error.

Possible data access from LUA scripts:

--[[

#Conquest DICOM server scripting overview

Brief demo of _all_ scripting options in **Conquest Dicom Server**.
If you run this script from **ZeroBrane Studio**, you can put
breakpoints on any line, single step, inspect data with the mouse,
and display arbitrary data and enter arbitrary commands to the
DICOM Server in the `Local console` window.

In version 1.4.19 for Windows the following modules are
embedded in the executable:
-- `require('socket')`
-- `require('pack')`
-- and string:reshape(string, i, j) is embedded

-- for 1.4.19beta
]]

-- for demo fill the global variable Data which normally contains
-- the incoming DICOM object. You can read from disk or from the
-- server using a PatientID:SOPInstanceUID format. For reading from
-- virtual server use 'StudyUID\SeriesUID\SOPInstanceUID format.
-- readdicom('c:\\t.dcm') -- from disk
readdicom('0009703828:1.3.46.670589.5.2.10.2156913941.892665340.475317')
-- Note that in this demo Data is undefined until after this call
-- I.e., Data:Read() is not allowed as first call

-- association info available from lua:
print(Association.Calling, Association.Called, Association.Thread, Association.ConnectedIP)

-- all counters available from lua:
print('------ All counters --------')
print(Global.StartTime)
print(Global.TotalTime)
print(Global.LoadTime)
print(Global.ProcessTime)
print(Global.SaveTime)
print(Global.ImagesSent)
print(Global.ImagesReceived)
print(Global.ImagesSaved)
print(Global.ImagesSaved)
print(Global.ImagesForwarded)

print(Global.ImagesExported)
print(Global.ImagesCopied)
print(Global.IncomingAssociations)
print(Global.EchoRequest)
print(Global.C_Find_PatientRoot)
print(Global.C_Move_PatientRootNKI)
print(Global.C_Move_PatientRoot)
print(Global.C_Find_StudyRoot)
print(Global.C_Move_StudyRootNKI)
print(Global.C_Move_StudyRoot)
print(Global.C_Find_PatientStudyOnly)
print(Global.C_Find_ModalityWorkList)
print(Global.C_Move_PatientStudyOnlyNKI)
print(Global.C_Move_PatientStudyOnly)
print(Global.UnknownRequest)
print(Global.CreateBasicFilmSession)
print(Global.DeleteBasicFilmSession)
print(Global.ActionBasicFilmSession)
print(Global.SetBasicFilmSession)
print(Global.CreateBasicFilmBox)
print(Global.ActionBasicFilmBox)
print(Global.SetBasicFilmBox)
print(Global.DeleteBasicFilmBox)
print(Global.SetBasicGrayScaleImageBox)
print(Global.SetBasicColorImageBox)
print(Global.GuiRequest)
print(Global.ImagesToGifFromGui)
print(Global.ImagesToDicomFromGui)
print(Global.ExtractFromGui)
print(Global.QueryFromGui)
print(Global.DeleteImageFromGui)
print(Global.DeletePatientFromGui)
print(Global.DeleteStudyFromGui)
print(Global.DeleteStudiesFromGui)
print(Global.DeleteSeriesFromGui)
print(Global.MovePatientFromGui)
print(Global.MoveStudyFromGui)
print(Global.MoveStudiesFromGui)
print(Global.MoveSeriesFromGui)
print(Global.AddedFileFromGui)
print(Global.DumpHeaderFromGui)
print(Global.ForwardFromGui)
print(Global.GrabFromGui)
print(Global.DatabaseOpen)
print(Global.DatabaseClose)
print(Global.DatabaseQuery)
print(Global.DatabaseAddRecord)
print(Global.DatabaseDeleteRecord)
print(Global.DatabaseNextRecord)
print(Global.DatabaseCreateTable)
print(Global.DatabaseUpdateRecords)
print(Global.QueryTime)
print(Global.SkippedCachedUpdates)
print(Global.UpdateDatabase)
print(Global.AddedDatabase)
print(Global.NKIPrivateCompress)
print(Global.NKIPrivateDecompress)
print(Global.DownSizeImage)

print(Global.DecompressJpeg)
print(Global.CompressJpeg)
print(Global.DecompressJpeg2000)
print(Global.CompressJpeg2000)
print(Global.DecompressedRLE)
print(Global.DePlaned)
print(Global.DePaletted)
print(Global.RecompressTime)
print(Global.gpps)
print(Global.gppstime)

-- all configuration items are available from lua (read/write)
print(Global.NoDicomCheck)
print(Global.DebugLevel)
print(Global.ThreadCount)
print(Global.OpenThreadCount)
print(Global.EnableReadAheadThread)
print(Global.WorkListMode)
print(Global.StorageFailedErrorCode)
print(Global.FailHoldOff)
print(Global.RetryDelay)
print(Global.QueueSize)
print(Global.ForwardCollectDelay)
print(Global.CacheVirtualData)
print(Global.gJpegQuality)
print(Global.gUseOpenJpeg)
print(Global.FixKodak)
print(Global.NumIndexing)
print(Global.DoubleBackSlashToDB)
print(Global.UseEscapeStringConstants)
print(Global.EnableComputedFields)
print(Global.FileCompressMode)
print(Global.RootConfig)
print(Global.BaseDir)
print(Global.DGATEVERSION)
print(Global.ConfigFile)
print(Global.DicomDict)
print(Global.AutoRoutePipe)
print(Global.AutoRouteExec)
print(Global.DroppedFileCompression)
print(Global.IncomingCompression)
print(Global.TransmitCompression)
print(Global.DefaultNKITransmitCompression)
print(Global.ArchiveCompression)
print(Global.TestMode)
print(Global.StatusString)

print('------ Set a config item --------')
Global.DebugLevel = 4

print('----- Read any dicom.ini item -----')
section = 'sscscp'; item = 'TCPPort'; default='';
print(gpps(section, item, default))

-- all command items are available from lua (read only)
print('------ testing debug log (typically not shown) --------', 1234)
debuglog('Command priority', Command.Priority)

-- set Data storage
print('------ test setting storage --------')
Data.Storage = 'MAG2'
print('You can only read/write storage in an import converter', Data.Storage);

-- read/write data, create sequences, and write into sequences (if [] not passed, [0] is assumed)
print('------ test read/write Data --------')
Data.PatientName = Data.PatientID
Data.ReferencedStudySequence = {}
print('Number of elements in sequence', #Data.ReferencedStudySequence);
print('This is a sequence: ', Data.ReferencedStudySequence);
Data.ReferencedStudySequence[0].StudyInstanceUID = Data.StudyInstanceUID
Data.ReferencedStudySequence.StudyInstanceUID = Data.StudyInstanceUID
Data.ReferencedStudySequence[1].StudyInstanceUID = Data.StudyInstanceUID
print(#Data.ReferencedStudySequence);
print('This is a sequence item: ', Data.ReferencedStudySequence[0].StudyInstanceUID);

-- list items in Object, returns names,types,groups,elements
print(Data.ReferencedStudySequence[1]:ListItems())

-- Delete sequence item:
-- Object:DeleteFromSequence(name, item)
-- Array:Delete(item)
deletefromsequence(Data.ReferencedStudySequence, 0);
Data.ReferencedStudySequence[1]:Delete()

-- delete items
print('------ test delete item --------')
Data.ReferencedStudySequence = nil
print('This was a sequence: ', Data.ReferencedStudySequence);

-- inspect dictionary (results in 16, 32 vs PatientID)
print(dictionary('PatientID'))
print(dictionary(16, 32))

-- inspect sql definition (database, row) results in 16, 32 PatientID 64 SQL_STR DT_STR)
print(get_sqldef(0, 0))

-- send a script to conquest
print('------ test conquest script call --------')
script('nop this is an ImportConverter script') -- only works when Data defined
Data:Script('nop this is an ImportConverter script running on a specified DICOM object')

-- send a servercommand to conquest and read its result
print('------ test conquest command call --------')
print(servercommand('display_status:'))
servercommand('display_status:', 'cgibinary') -- for web interface; also allows value 'cgihtml' or <filename to upload
and >filename to download

-- run executable in the background
system('dgate.exe -?')

-- get an item from ACRNEMA.MAP
print('------ test reading ACRNEMA.MAP --------')
print(get_amap(0))
-- results in 'CONQUESTSRV1 127.0.0.1 5678 un'

-- remap UIDs (in 1.4.17)

print(changeuid('12jgkfjgfkgjax', 'aapnootmies'))
print(changeuidback('aapnootmies'))
print(changeuid('1.1'))
print(changeuidback('1.2.826.0.1.3680043.2.135.734877.42238624.7.1359125302.31.0'))
print(genuid())
-- results in:
-- [CONQUESTSRV1] aapnootmies
-- [CONQUESTSRV1] 12jgkfjgfkgjax
-- [CONQUESTSRV1] 1.2.826.0.1.3680043.2.135.734877.42238624.7.1359125302.31.0
-- [CONQUESTSRV1] 1.1
-- [CONQUESTSRV1] a new uid here
-- To remap all uids use script('newuids') and reverse (1.4.17) with script('olduids')

-- staged remap UIDs (in 1.4.19)
print(changeuid('12jgkfjgfkgjax', 'aapnootmies', 'stage1'))
print(changeuidback('aapnootmies', 'stage1'))
print(changeuid('1.1', 'stage1'))
print(changeuidback('1.2.826.0.1.3680043.2.135.734877.42238624.7.1359125302.31.0', 'stage1'))
print(genuid())

-- query the local database (also possible from CGI interface, if the database is setup in the CGI dicom.ini)
print('------ test quering a database --------')
print(dbquery('DICOMPatients', 'PatientNam', 'PatientID LIKE \'2%\'')[1][1])

-- set and get pixels in the current image or any loaded image
print('------ test reading and writing pixels --------')
x=0; y=0; frame=0;
print(getpixel(x, y, frame));
setpixel(x, y, frame, getpixel(x, y, frame)*2+10);
print(getpixel(x, y, frame));
print(Data:GetPixel(x, y, frame))

-- set and get rows and colums in the image
print('------ test reading and writing rows and columns --------')
a = getrow(Data.Rows / 2)
a = Data:GetRow(Data.Rows / 2)
print(a[1], a[2], a[3], a[4], a[128]);
setcolumn(Data.Columns / 2, frame, a)
Data:SetColumn(Data.Columns / 3, frame, a)

-- get / set image as binary string, also allow efficient binary image conversion (1.4.17)
a = getimage(frame); a = Data:GetImage(frame)
setimage(frame, a)
Data:SetImage(frame, a)

-- get / set image as binary string with floats (1.4.17a)
-- read a from a floating point image, i.e., it has 4 bytes per pixel, scale passed
-- setimage(frame, a, 1000); Data:SetImage(frame, a, 1000)

-- copy a dicom object
local c = Data:Copy()
c:Write('c:\\copy.dcm')
c:free()

-- compress a dicom object
local c = Data:Compress('jk')
c:Write('c:\\compressed_jk.dcm')
c:free()

-- create/read/write/destroy a dicom object
print('------ test create/read/write dicom object --------')
a = newdicomobject()
a = DicomObject:new() -- preferred notation in 1.4.17
a.PatientID = 'test'
writedicom(a, 'c:\\file1.dcm')
b = newdicomobject()
readdicom(b, 'c:\\file1.dcm')
writeheader(b, 'c:\\file1.txt')
a:Write('c:\\file2.dcm')
a:Read('c:\\file2.dcm')
-- document read here
a:Dump('c:\\file2.txt')
a:GetPixel(x, y, z)
a:SetPixel(x, y, z, value)
a:GetRow(x, y, z)
a:SetRow(x, y, z, table)
a:GetColumn(x, y, z)
a:SetColumn(x, y, z, table)
deletedicomobject(a) -- not required: will be freed automatically
-- a:free() -- also allowed in 1.4.17:

-- query a dicomserver (returns a dicomobjectarray)
print('------ test query a dicom server --------')
b=newdicomobject(); b.PatientName = '*'; a=dicomquery('CONQUESTSRV1', 'PATIENT', b);
print ('First query result has this patientname:', a[0].PatientName);
-- deletedicomobject(a) -- not required: will be freed automatically

-- delete data from local dicomserver (use with care)
print('------ delete from dicom server --------')
b=newdicomobject(); b.PatientID = 'hopedoesntexist'; dicomdelete(b);
local threadno_forprogressinfo=123
b=newdicomobject(); b.PatientID = 'hopedoesntexist'; newdicomdelete(b, threadno_forprogressinfo);

-- modify data from local dicomserver (use with care)
local threadno_forprogressinfo=123
local copy=1
b=newdicomobject(); b.PatientID = 'hopedoesntexist'; newdicommodify(b, 'nop', threadno_forprogressinfo, copy);

-- create a dicomobjectarray
print('------ test creating dicom array --------')
a=newdicomarray(); a[0].PatientID='a'; a[1].PatientID='b';
-- in 1.4.17 also: a = DicomObject:newarray()

-- read the filename of a dropped file if any
print('------ test Filename variable --------')
print('Is there a file dropped?', Filename)

-- access to long and sequence VRs
print('------ test reading / writing long VRs --------')
y = Data:GetVR(0x7fe0, 0x10);
print('Length of y', #y);
y = getvr(0x7fe0, 0x10);
setvr(0x7fe0, 0x10, y);
Data:SetVR(0x7fe0, 0x10, y);
-- where y is either a table starting at 1, or a dicomobjectarray for a sequence
-- In 1.4.17 these command can also return a more efficient binary string:

y = Data:GetVR(0x7fe0, 0x10, true);
Data:SetVR(0x7fe0, 0x10, y);

-- memory allocation debugging
print('------ memory alloc check NOTE: CALL IS NOT THREAD SAFE --------')
print(heapinfo());

-- move
print('------ testing a C-MOVE --------')
AE = 'CONQUESTSRV1';
b=newdicomobject(); b.PatientName = 'HEAD EXP2'; b.QueryRetrieveLevel = 'STUDY';
dicommove('CONQUESTSRV1', AE, b);
b=newdicomobject(); b.PatientName = 'HEAD EXP2'; b.QueryRetrieveLevel = 'STUDY';
dicommove('CONQUESTSRV1', AE, b, 0, 'print(Global.StatusString)');
b=newdicomobject(); b.PatientName = 'HEAD EXP2'; b.QueryRetrieveLevel = 'PATIENT';
dicommove('CONQUESTSRV1', AE, b, 1);

-- sql
print('------ testing an SQL statement --------')
sql("CREATE TABLE UserTable (CounterID varchar(99), Val integer)");
sql("INSERT INTO UserTable (CounterID,Val) VALUES ('CT',1) ON DUPLICATE KEY UPDATE Val=Val+1");

-- sleep, delay in ms
sleep(1000)

-- mkdir, make folder recursively
mkdir('c:\\temp\\test')

-- enter object into server:
x = DicomObject:new()
x:Read('c:\\t.dcm'); x:AddImage() -- or addimage(x)

-- special script command 'retry'
print('------ testing retry script command --------')
script('retry') -- when used in RejectedImageWorkListConverter0 and RejectedImageConverter0; will re-attempt to
store the object after the script is done; in 1.4.19 also retry()

-- special script command 'defer'
print('------ testing defer script command --------')
script('defer') -- when used in an ExportConverter, the convert will re-attempt to process or forward the object later

7.3 dicom.sql

This file is placed in the same directory as the executable (e.g., c:\dicomserver). It specifies the
configuration of the SQL database used to store IOD module attributes for Query/Retrieve
operations. The Conquest DICOM server generates (and overwrites) it automatically upon first
installation (i.e., when dicom.ini does not exist). Editing this file is not necessary, except for a
applying a fix when using ORACLE or newer MariaDB, where the name of the fields
‘Rows’ and ‘Colums’ in the image database must be changed to (e.g.) ‘QRows’ and
‘QColums" before the database is initialized (i.e., after "Save Configuration"). It is
possible to check the syntax of this file for errors using the "List Database Layout" button on
the "Maintenance" page of the Conquest DICOM server. Note that the database definition
defines a copy of the PatientID in both the series and the image table. This is done to allow
improved query speed.
From version 1.4.0 on, the contents of this file depend on the selected database driver upon

installation (when dicom.ini does not exist), where the built in dBaseIII driver uses a non-
normalized version of the database (not listed here), and the others use the file as listed here.

 Implementing changed versions of this file requires a full regeneration of the database.
Without full regeneration, the server will not function correctly! Removing fields from this
database may affect the DICOM server user interface operation.

When adding database fields leave the first and last field in place; they are the primary key
and the link to the higher database. The server fails if they are removed or moved. To force
case insensitive queries (1.4.19c up), replace 'DT_STR' with 'DT_ISTR' on relevant
columns. This can be done without regenerating the database.

The worklist database has an extra column with HL7 tags used for translating HL7 data to a
dicom worklist. These tags can be changed at any time without regenerating the database,
restarting the server suffices to use the new tags.

Push "Clear worklist database" on the installation page of the GUI to create a fresh worklist
database.

/*
DICOM Database layout
Example version for all SQL servers (mostly normalized)
#
(File DICOM.SQL)
** DO NOT EDIT THIS FILE UNLESS YOU KNOW WHAT YOU ARE DOING **
#
Version with modality moved to the series level and EchoNumber in image table
Revision 3: Patient birthday and sex, bolus agent, correct field lengths
Revision 4: Studymodality, Station and Department in study
Manufacturer, Model, BodyPart and Protocol in series
Acqdate/time, coil, acqnumber, slicelocation and pixel info in images
Notes for revision 4:
DepartmentName in study (should officially be in series, but eFilm expects it in study)
StationName is in study (should officially be in series, but more useful in study)
Revision 5: Added patientID in series and images for more efficient querying
Revision 6: Added frame of reference UID in series table
Revision 7: Added ImageType in image table, StudyModality to 64 chars, AcqDate to SQL_C_DATE
Revision 8: Denormalized study table (add patient ID, name, birthdate) to show consistency problems
Revision 10: Fixed width of ReceivingCoil: to 16 chars
Revision 13: Added ImageID to image database
Revision 14: Added WorkList database with HL7 tags
Revision 16: Moved Stationname and InstitutionalDepartmentName to series table
Revision 17: EchoNumber, ReqProcDescription to 64 characters; StudyModality, EchoNumber, ImageType to DT_MSTR; use
Institution instead of InstitutionalDepartmentName');
Revision 18: DT_STR can now be replaced by DT_ISTR to force case insensitive searches
#
5 databases need to be defined:
#
Patient
Study
Series
Image
WorkList
#
#
The last defined element of Study is a link back to Patient
The last defined element of Series is a link back to Study
The last defined element of Image is a link back to Series
#
#
Format:
{ Group, Element, Column Name, Column Length, SQL-Type, DICOM-Type }
*/

Patient
{

{ 0x0010, 0x0020, "PatientID", 64, SQL_C_CHAR, DT_STR },
{ 0x0010, 0x0010, "PatientName", 64, SQL_C_CHAR, DT_STR },
{ 0x0010, 0x0030, "PatientBirthDate", 8, SQL_C_DATE, DT_DATE },
{ 0x0010, 0x0040, "PatientSex", 16, SQL_C_CHAR, DT_STR }

}

Study
{

{ 0x0020, 0x000d, "StudyInstanceUID", 64, SQL_C_CHAR, DT_UI },
{ 0x0008, 0x0020, "StudyDate", 8, SQL_C_DATE, DT_DATE },
{ 0x0008, 0x0030, "StudyTime", 16, SQL_C_CHAR, DT_TIME },
{ 0x0020, 0x0010, "StudyID", 16, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x1030, "StudyDescription", 64, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0050, "AccessionNumber", 16, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0090, "ReferPhysician", 64, SQL_C_CHAR, DT_STR },
{ 0x0010, 0x1010, "PatientsAge", 16, SQL_C_CHAR, DT_STR },
{ 0x0010, 0x1030, "PatientsWeight", 16, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0061, "StudyModality", 64, SQL_C_CHAR, DT_MSTR },

{ 0x0010, 0x0010, "PatientName", 64, SQL_C_CHAR, DT_STR },
{ 0x0010, 0x0030, "PatientBirthDate", 8, SQL_C_DATE, DT_DATE },
{ 0x0010, 0x0040, "PatientSex", 16, SQL_C_CHAR, DT_STR }

{ 0x0010, 0x0020, "PatientID", 64, SQL_C_CHAR, DT_STR }
}

Series
{

{ 0x0020, 0x000e, "SeriesInstanceUID", 64, SQL_C_CHAR, DT_UI },
{ 0x0020, 0x0011, "SeriesNumber", 12, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0021, "SeriesDate", 8, SQL_C_DATE, DT_DATE },
{ 0x0008, 0x0031, "SeriesTime", 16, SQL_C_CHAR, DT_TIME },
{ 0x0008, 0x103e, "SeriesDescription", 64, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0060, "Modality", 16, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x1010, "StationName", 16, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0080, "Institution", 64, SQL_C_CHAR, DT_STR },
{ 0x0018, 0x5100, "PatientPosition", 16, SQL_C_CHAR, DT_STR },
{ 0x0018, 0x0010, "ContrastBolusAgent", 64, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0070, "Manufacturer", 64, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x1090, "ModelName", 64, SQL_C_CHAR, DT_STR },
{ 0x0018, 0x0015, "BodyPartExamined", 64, SQL_C_CHAR, DT_STR },
{ 0x0018, 0x1030, "ProtocolName", 64, SQL_C_CHAR, DT_STR },
{ 0x0020, 0x0052, "FrameOfReferenceUID", 64, SQL_C_CHAR, DT_UI },
{ 0x0010, 0x0020, "SeriesPat", 64, SQL_C_CHAR, DT_STR },
{ 0x0020, 0x000d, "StudyInstanceUID", 64, SQL_C_CHAR, DT_UI }

}

Image
{

{ 0x0008, 0x0018, "SOPInstanceUID", 64, SQL_C_CHAR, DT_UI },
{ 0x0008, 0x0016, "SOPClassUID", 64, SQL_C_CHAR, DT_UI },
{ 0x0020, 0x0013, "ImageNumber", 12, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0023, "ImageDate", 8, SQL_C_DATE, DT_DATE },
{ 0x0008, 0x0033, "ImageTime", 16, SQL_C_CHAR, DT_TIME },
{ 0x0018, 0x0086, "EchoNumber", 64, SQL_C_CHAR, DT_MSTR },
{ 0x0028, 0x0008, "NumberOfFrames", 12, SQL_C_CHAR, DT_STR },
{ 0x0008, 0x0022, "AcqDate", 8, SQL_C_DATE, DT_DATE },
{ 0x0008, 0x0032, "AcqTime", 16, SQL_C_CHAR, DT_TIME },
{ 0x0018, 0x1250, "ReceivingCoil", 16, SQL_C_CHAR, DT_STR },
{ 0x0020, 0x0012, "AcqNumber", 12, SQL_C_CHAR, DT_STR },
{ 0x0020, 0x1041, "SliceLocation", 16, SQL_C_CHAR, DT_STR },
{ 0x0028, 0x0002, "SamplesPerPixel", 5, SQL_C_CHAR, DT_UINT16 },
{ 0x0028, 0x0004, "PhotoMetricInterpretation", 16, SQL_C_CHAR, DT_STR },
{ 0x0028, 0x0010, "Rows", 5, SQL_C_CHAR, DT_UINT16 },
{ 0x0028, 0x0011, "Colums", 5, SQL_C_CHAR, DT_UINT16 },
{ 0x0028, 0x0101, "BitsStored", 5, SQL_C_CHAR, DT_UINT16 },
{ 0x0008, 0x0008, "ImageType", 128, SQL_C_CHAR, DT_MSTR },
{ 0x0054, 0x0400, "ImageID", 16, SQL_C_CHAR, DT_STR },
{ 0x0010, 0x0020, "ImagePat", 64, SQL_C_CHAR, DT_STR },
{ 0x0020, 0x000e, "SeriesInstanceUID", 64, SQL_C_CHAR, DT_UI }

}

WorkList
{

{ 0x0008, 0x0050, "AccessionNumber", 16, SQL_C_CHAR, DT_STR, "OBR.3" },
{ 0x0010, 0x0020, "PatientID", 64, SQL_C_CHAR, DT_STR, "PID.4" },
{ 0x0010, 0x0010, "PatientName", 64, SQL_C_CHAR, DT_STR, "PID.5" },
{ 0x0010, 0x0030, "PatientBirthDate", 8, SQL_C_DATE, DT_DATE, "PID.7" },
{ 0x0010, 0x0040, "PatientSex", 16, SQL_C_CHAR, DT_STR, "PID.8" },

{ 0x0010, 0x2000, "MedicalAlerts", 64, SQL_C_CHAR, DT_STR, "---" },
{ 0x0010, 0x2110, "ContrastAllergies", 64, SQL_C_CHAR, DT_STR, "---" },
{ 0x0020, 0x000d, "StudyInstanceUID", 64, SQL_C_CHAR, DT_UI, "---" },
{ 0x0032, 0x1032, "ReqPhysician", 64, SQL_C_CHAR, DT_STR, "OBR.16" },
{ 0x0032, 0x1060, "ReqProcDescription", 16, SQL_C_CHAR, DT_STR, "OBR.4.1" },

{ 0x0040, 0x0100, "--------", 0, SQL_C_CHAR, DT_STARTSEQUENCE, "---" },
{ 0x0008, 0x0060, "Modality", 16, SQL_C_CHAR, DT_STR, "OBR.21" },
{ 0x0032, 0x1070, "ReqContrastAgent", 64, SQL_C_CHAR, DT_STR, "---" },
{ 0x0040, 0x0001, "ScheduledAE", 16, SQL_C_CHAR, DT_STR, "---" },
{ 0x0040, 0x0002, "StartDate", 8, SQL_C_DATE, DT_DATE, "OBR.7.DATE" },
{ 0x0040, 0x0003, "StartTime", 16, SQL_C_CHAR, DT_TIME, "OBR.7.TIME" },
{ 0x0040, 0x0006, "PerfPhysician", 64, SQL_C_CHAR, DT_STR, "---" },
{ 0x0040, 0x0007, "SchedPSDescription", 64, SQL_C_CHAR, DT_STR, "---" },
{ 0x0040, 0x0009, "SchedPSID", 16, SQL_C_CHAR, DT_STR, "OBR.4" },
{ 0x0040, 0x0010, "SchedStationName", 16, SQL_C_CHAR, DT_STR, "OBR.24" },
{ 0x0040, 0x0011, "SchedPSLocation", 16, SQL_C_CHAR, DT_STR, "---" },
{ 0x0040, 0x0012, "PreMedication", 64, SQL_C_CHAR, DT_STR, "---" },
{ 0x0040, 0x0400, "SchedPSComments", 64, SQL_C_CHAR, DT_STR, "---" },
{ 0x0040, 0x0100, "---------", 0, SQL_C_CHAR, DT_ENDSEQUENCE, "---" },

 { 0x0040, 0x1001, "ReqProcID", 16, SQL_C_CHAR, DT_STR, "OBR.4.0" },
{ 0x0040, 0x1003, "ReqProcPriority", 64, SQL_C_CHAR, DT_STR, "OBR.27 }

}

7.4 acrnema.map

This file is placed in the same directory as the executable (e.g., c:\dicomserver). It specifies the
configuration of the ACR-NEMA to IP address and port map, used for Query/Retrieve
operations. Most DICOM servers and applications will NOT communicate with the Conquest
DICOM server unless they have been correctly added to this list and this server has been made
known to them. This file also specifies the type of compression that will be proposed for
outgoing connections. The accepted values are the same as for DroppedFileCompression in
dicom.ini, with the exception that transmission of dicom objects in "as" and "nj" modes is not
correctly implemented and should only be used with NKI clients or the Conquest DICOM
server.

Upon installation, an empty version of this file is created automatically (the installation program
will NOT overwrite this file if it exists). Edit the contents of this file through the "Known
DICOM providers" page of the Conquest DICOM server. Do not change the file header.
It is possible to check the syntax of this file for errors using the "List DICOM providers"
button on the "Maintenance" page of the Conquest DICOM server.

It is possible to test communication with other DICOM servers (that support the Query/Move
functionality, i.e., image servers) through the "Query / Move" page of the Conquest DICOM
server.

Conquest addition: this file supports a simple wild-card mechanism. The AE, host name and IP
port may all end on a *. The * part of the AE is copied into the host name and/or IP port without
change. In the following example any application with an AE of "V" followed by its IP number

or host name will be allowed to communicate through port 1234.

The wildcard option is highly useful to let a group of, e.g., viewer applications or servers
communicate without having to configure each of them individually in the server. Add normal
entries above wildcard entries as they may conflict in name.

/* **
 * *
 * DICOM AE (Application entity) -> IP address / Port map *
 * (This is file ACRNEMA.MAP) *
 * *
 * All DICOM systems that want to retrieve images from the *
 * Conquest DICOM server must be listed here with correct *
 * AE name, (IP adress or hostname) and port number. The *
 * first entry is the Conquest server itself. The last ones *
 * with * show wildcard mechanism. Add new entries above. *
 * *
 * The syntax for each entry is : *
 * AE <IP adress|Host name> port number compression *
 * *
 * For compression see manual. Values are un=uncompressed; *
 * ul=littleendianexplicit,ub=bigendianexplicit,ue=both *
 * j2=lossless jpeg;j3..j6=lossy jpeg;n1..n4=nki private *
 * js =lossless jpegLS; j7=lossy jpegLS *
 * jk =lossless jpeg2000;jl=lossy jpeg2000 *
 * J3NN..j6NN, JLNN or J7NN overrides quality factor to NN% *
 * *
 ** */

CONQUESTSRV1 127.0.0.1 5678 un

V* * 1234 un
W* * 666 un
S* * 5678 un

7.5 dgatesop.lst

This file is placed in the same directory as the executable (e.g., c:\dicomserver). It specifies the
configuration of the SSC-SCP engine. This file can also be used to selectively reject other SOP
classes, as well as provide security for incoming AE’s. The Conquest DICOM server generates
it automatically upon installation. A copy of this file is present in the TEMP directory. This
latter copy is automatically removed when closing the server. From version 1.4.0,
GEMRStorage and GECTStorage are disabled (using ‘#’), thereby forcing GE scanners to
transmit standard DICOM images that other viewers can handle. From version 1.4.2 up, JPEG
transfer syntaxes are enabled for incoming connections if JPEG support is configured as ON.
To filter incoming requests from unknown AE addresses start adding RemoteAE lines, not
forgetting to add the server AE itself as well.

#
DICOM Application / sop / transfer UID list.
#
This list is used by the CheckedPDU_Service ("filename") service
class. All incoming associations will be verified against this
file.
#
Revision 2: disabled GEMRStorage and GECTStorage
Revision 3: extended with new sops and with JPEG transfer syntaxes
Revision 4: added Modality Worklist query
Revision 5: Erdenay added UIDS for CTImageStorageEnhanced, RawDataStorage,
SpatialRegistrationStorage, SpatialFiducialsStorage, DeformableSpatialRegistrationStorage,
SegmentationStorage, SurfaceSegmentationStorage, RTIonPlanStorage, RTIonBeamsTreatmentRecordStorage
Revision 6: X-RayRadiationDoseSR, BreastTomosynthesisImageStorage and others
Revision 7: JpegLS and BigEndianExplicit enabled
Revision 8: Added C-GET
#

#None none RemoteAE
#None none LocalAE
#DICOM 1.2.840.10008.3.1.1.1 application
Verification 1.2.840.10008.1.1 sop
RETIRED_StoredPrintStorage 1.2.840.10008.5.1.1.27 sop
RETIRED_HardcopyGrayscaleImageStorage 1.2.840.10008.5.1.1.29 sop
RETIRED_HardcopyColorImageStorage 1.2.840.10008.5.1.1.30 sop
ComputedRadiographyImageStorage 1.2.840.10008.5.1.4.1.1.1 sop
DigitalXRayImageStorageForPresentation 1.2.840.10008.5.1.4.1.1.1.1 sop
DigitalXRayImageStorageForProcessing 1.2.840.10008.5.1.4.1.1.1.1.1 sop
DigitalMammographyXRayImageStorageForPresentation 1.2.840.10008.5.1.4.1.1.1.2 sop
DigitalMammographyXRayImageStorageForProcessing 1.2.840.10008.5.1.4.1.1.1.2.1 sop
DigitalIntraOralXRayImageStorageForPresentation 1.2.840.10008.5.1.4.1.1.1.3 sop
DigitalIntraOralXRayImageStorageForProcessing 1.2.840.10008.5.1.4.1.1.1.3.1 sop
CTImageStorage 1.2.840.10008.5.1.4.1.1.2 sop
EnhancedCTImageStorage 1.2.840.10008.5.1.4.1.1.2.1 sop
RETIRED_UltrasoundMultiframeImageStorage 1.2.840.10008.5.1.4.1.1.3 sop
UltrasoundMultiframeImageStorage 1.2.840.10008.5.1.4.1.1.3.1 sop
MRImageStorage 1.2.840.10008.5.1.4.1.1.4 sop
EnhancedMRImageStorage 1.2.840.10008.5.1.4.1.1.4.1 sop
MRSpectroscopyStorage 1.2.840.10008.5.1.4.1.1.4.2 sop
EnhancedMRColorImageStorage 1.2.840.10008.5.1.4.1.1.4.3 sop
RETIRED_NuclearMedicineImageStorage 1.2.840.10008.5.1.4.1.1.5 sop
RETIRED_UltrasoundImageStorage 1.2.840.10008.5.1.4.1.1.6 sop
UltrasoundImageStorage 1.2.840.10008.5.1.4.1.1.6.1 sop
EnhancedUSVolumeStorage 1.2.840.10008.5.1.4.1.1.6.2 sop
SecondaryCaptureImageStorage 1.2.840.10008.5.1.4.1.1.7 sop
MultiframeSingleBitSecondaryCaptureImageStorage 1.2.840.10008.5.1.4.1.1.7.1 sop
MultiframeGrayscaleByteSecondaryCaptureImageStorage 1.2.840.10008.5.1.4.1.1.7.2 sop
MultiframeGrayscaleWordSecondaryCaptureImageStorage 1.2.840.10008.5.1.4.1.1.7.3 sop
MultiframeTrueColorSecondaryCaptureImageStorage 1.2.840.10008.5.1.4.1.1.7.4 sop
RETIRED_StandaloneOverlayStorage 1.2.840.10008.5.1.4.1.1.8 sop
RETIRED_StandaloneCurveStorage 1.2.840.10008.5.1.4.1.1.9 sop
DRAFT_WaveformStorage 1.2.840.10008.5.1.4.1.1.9.1 sop
TwelveLeadECGWaveformStorage 1.2.840.10008.5.1.4.1.1.9.1.1 sop
GeneralECGWaveformStorage 1.2.840.10008.5.1.4.1.1.9.1.2 sop
AmbulatoryECGWaveformStorage 1.2.840.10008.5.1.4.1.1.9.1.3 sop
HemodynamicWaveformStorage 1.2.840.10008.5.1.4.1.1.9.2.1 sop
CardiacElectrophysiologyWaveformStorage 1.2.840.10008.5.1.4.1.1.9.3.1 sop
BasicVoiceAudioWaveformStorage 1.2.840.10008.5.1.4.1.1.9.4.1 sop
GeneralAudioWaveformStorage 1.2.840.10008.5.1.4.1.1.9.4.2 sop
ArterialPulseWaveformStorage 1.2.840.10008.5.1.4.1.1.9.5.1 sop
RespiratoryWaveformStorage 1.2.840.10008.5.1.4.1.1.9.6.1 sop
RETIRED_StandaloneModalityLUTStorage 1.2.840.10008.5.1.4.1.1.10 sop
RETIRED_StandaloneVOILUTStorage 1.2.840.10008.5.1.4.1.1.11 sop
GrayscaleSoftcopyPresentationStateStorage 1.2.840.10008.5.1.4.1.1.11.1 sop
ColorSoftcopyPresentationStateStorage 1.2.840.10008.5.1.4.1.1.11.2 sop
PseudoColorSoftcopyPresentationStateStorage 1.2.840.10008.5.1.4.1.1.11.3 sop
BlendingSoftcopyPresentationStateStorage 1.2.840.10008.5.1.4.1.1.11.4 sop
XAXRFGrayscaleSoftcopyPresentationStateStorage 1.2.840.10008.5.1.4.1.1.11.5 sop
RETIRED_XASinglePlaneStorage 1.2.840.10008.5.1.4.1.1.12 sop
XRayAngiographicImageStorage 1.2.840.10008.5.1.4.1.1.12.1 sop
EnhancedXAImageStorage 1.2.840.10008.5.1.4.1.1.12.1.1 sop
XRayRadiofluoroscopicImageStorage 1.2.840.10008.5.1.4.1.1.12.2 sop
EnhancedXRFImageStorage 1.2.840.10008.5.1.4.1.1.12.2.1 sop
RETIRED_XRayAngiographicBiPlaneImageStorage 1.2.840.10008.5.1.4.1.1.12.3 sop
XRay3DAngiographicImageStorage 1.2.840.10008.5.1.4.1.1.13.1.1 sop
XRay3DCraniofacialImageStorage 1.2.840.10008.5.1.4.1.1.13.1.2 sop
BreastTomosynthesisImageStorage 1.2.840.10008.5.1.4.1.1.13.1.3 sop
NuclearMedicineImageStorage 1.2.840.10008.5.1.4.1.1.20 sop
RawDataStorage 1.2.840.10008.5.1.4.1.1.66 sop
SpatialRegistrationStorage 1.2.840.10008.5.1.4.1.1.66.1 sop
SpatialFiducialsStorage 1.2.840.10008.5.1.4.1.1.66.2 sop
DeformableSpatialRegistrationStorage 1.2.840.10008.5.1.4.1.1.66.3 sop
SegmentationStorage 1.2.840.10008.5.1.4.1.1.66.4 sop
SurfaceSegmentationStorage 1.2.840.10008.5.1.4.1.1.66.5 sop
RealWorldValueMappingStorage 1.2.840.10008.5.1.4.1.1.67 sop
RETIRED_VLImageStorage 1.2.840.10008.5.1.4.1.1.77.1 sop
VLEndoscopicImageStorage 1.2.840.10008.5.1.4.1.1.77.1.1 sop
VideoEndoscopicImageStorage 1.2.840.10008.5.1.4.1.1.77.1.1.1 sop
VLMicroscopicImageStorage 1.2.840.10008.5.1.4.1.1.77.1.2 sop
VideoMicroscopicImageStorage 1.2.840.10008.5.1.4.1.1.77.1.2.1 sop
VLSlideCoordinatesMicroscopicImageStorage 1.2.840.10008.5.1.4.1.1.77.1.3 sop
VLPhotographicImageStorage 1.2.840.10008.5.1.4.1.1.77.1.4 sop
VideoPhotographicImageStorage 1.2.840.10008.5.1.4.1.1.77.1.4.1 sop
OphthalmicPhotography8BitImageStorage 1.2.840.10008.5.1.4.1.1.77.1.5.1 sop
OphthalmicPhotography16BitImageStorage 1.2.840.10008.5.1.4.1.1.77.1.5.2 sop
StereometricRelationshipStorage 1.2.840.10008.5.1.4.1.1.77.1.5.3 sop
OphthalmicTomographyImageStorage 1.2.840.10008.5.1.4.1.1.77.1.5.4 sop
VLWholeSlideMicroscopyImageStorage 1.2.840.10008.5.1.4.1.1.77.1.6 sop
RETIRED_VLMultiFrameImageStorage 1.2.840.10008.5.1.4.1.1.77.2 sop
LensometryMeasurementsStorage 1.2.840.10008.5.1.4.1.1.78.1 sop
AutorefractionMeasurementsStorage 1.2.840.10008.5.1.4.1.1.78.2 sop
KeratometryMeasurementsStorage 1.2.840.10008.5.1.4.1.1.78.3 sop
SubjectiveRefractionMeasurementsStorage 1.2.840.10008.5.1.4.1.1.78.4 sop
VisualAcuityMeasurementsStorage 1.2.840.10008.5.1.4.1.1.78.5 sop
SpectaclePrescriptionReportStorage 1.2.840.10008.5.1.4.1.1.78.6 sop
OphthalmicAxialMeasurementsStorage 1.2.840.10008.5.1.4.1.1.78.7 sop
IntraocularLensCalculationsStorage 1.2.840.10008.5.1.4.1.1.78.8 sop
MacularGridThicknessAndVolumeReportStorage 1.2.840.10008.5.1.4.1.1.79.1 sop
OphthalmicVisualFieldStaticPerimetryMeasurementsSt. 1.2.840.10008.5.1.4.1.1.80.1 sop
DRAFT_SRTextStorage 1.2.840.10008.5.1.4.1.1.88.1 sop
DRAFT_SRAudioStorage 1.2.840.10008.5.1.4.1.1.88.2 sop
DRAFT_SRDetailStorage 1.2.840.10008.5.1.4.1.1.88.3 sop
DRAFT_SRComprehensiveStorage 1.2.840.10008.5.1.4.1.1.88.4 sop
BasicTextSRStorage 1.2.840.10008.5.1.4.1.1.88.11 sop
EnhancedSRStorage 1.2.840.10008.5.1.4.1.1.88.22 sop
ComprehensiveSRStorage 1.2.840.10008.5.1.4.1.1.88.33 sop
ProcedureLogStorage 1.2.840.10008.5.1.4.1.1.88.40 sop

MammographyCADSRStorage 1.2.840.10008.5.1.4.1.1.88.50 sop
KeyObjectSelectionDocumentStorage 1.2.840.10008.5.1.4.1.1.88.59 sop
ChestCADSRStorage 1.2.840.10008.5.1.4.1.1.88.65 sop
XRayRadiationDoseSRStorage 1.2.840.10008.5.1.4.1.1.88.67 sop
ColonCADSRStorage 1.2.840.10008.5.1.4.1.1.88.69 sop
ImplantationPlanSRDocumentStorage 1.2.840.10008.5.1.4.1.1.88.70 sop
EncapsulatedPDFStorage 1.2.840.10008.5.1.4.1.1.104.1 sop
EncapsulatedCDAStorage 1.2.840.10008.5.1.4.1.1.104.2 sop
PositronEmissionTomographyImageStorage 1.2.840.10008.5.1.4.1.1.128 sop
RETIRED_StandalonePETCurveStorage 1.2.840.10008.5.1.4.1.1.129 sop
EnhancedPETImageStorage 1.2.840.10008.5.1.4.1.1.130 sop
BasicStructuredDisplayStorage 1.2.840.10008.5.1.4.1.1.131 sop
RTImageStorage 1.2.840.10008.5.1.4.1.1.481.1 sop
RTDoseStorage 1.2.840.10008.5.1.4.1.1.481.2 sop
RTStructureSetStorage 1.2.840.10008.5.1.4.1.1.481.3 sop
RTBeamsTreatmentRecordStorage 1.2.840.10008.5.1.4.1.1.481.4 sop
RTPlanStorage 1.2.840.10008.5.1.4.1.1.481.5 sop
RTBrachyTreatmentRecordStorage 1.2.840.10008.5.1.4.1.1.481.6 sop
RTTreatmentSummaryRecordStorage 1.2.840.10008.5.1.4.1.1.481.7 sop
RTIonPlanStorage 1.2.840.10008.5.1.4.1.1.481.8 sop
RTIonBeamsTreatmentRecordStorage 1.2.840.10008.5.1.4.1.1.481.9 sop
DRAFT_RTBeamsDeliveryInstructionStorage 1.2.840.10008.5.1.4.34.1 sop
GenericImplantTemplateStorage 1.2.840.10008.5.1.4.43.1 sop
ImplantAssemblyTemplateStorage 1.2.840.10008.5.1.4.44.1 sop
ImplantTemplateGroupStorage 1.2.840.10008.5.1.4.45.1 sop
#GEMRStorage 1.2.840.113619.4.2 sop
#GECTStorage 1.2.840.113619.4.3 sop
GE3DModelObjectStorage 1.2.840.113619.4.26 sop
GERTPlanStorage 1.2.840.113619.5.249 sop
GERTPlanStorage2 1.2.840.113619.4.5.249 sop
GESaturnTDSObjectStorage 1.2.840.113619.5.253 sop
Philips3DVolumeStorage 1.2.46.670589.5.0.1 sop
Philips3DObjectStorage 1.2.46.670589.5.0.2 sop
PhilipsSurfaceStorage 1.2.46.670589.5.0.3 sop
PhilipsCompositeObjectStorage 1.2.46.670589.5.0.4 sop
PhilipsMRCardioProfileStorage 1.2.46.670589.5.0.7 sop
PhilipsMRCardioImageStorage 1.2.46.670589.5.0.8 sop
PatientRootQuery 1.2.840.10008.5.1.4.1.2.1.1 sop
PatientRootRetrieve 1.2.840.10008.5.1.4.1.2.1.2 sop
PatientRootGet 1.2.840.10008.5.1.4.1.2.1.3 sop
StudyRootQuery 1.2.840.10008.5.1.4.1.2.2.1 sop
StudyRootRetrieve 1.2.840.10008.5.1.4.1.2.2.2 sop
StudyRootGet 1.2.840.10008.5.1.4.1.2.2.3 sop
PatientStudyOnlyQuery 1.2.840.10008.5.1.4.1.2.3.1 sop
PatientStudyOnlyRetrieve 1.2.840.10008.5.1.4.1.2.3.2 sop
PatientStudyOnlyGet 1.2.840.10008.5.1.4.1.2.3.3 sop
FindModalityWorkList 1.2.840.10008.5.1.4.31 sop
PatientRootRetrieveNKI 1.2.826.0.1.3680043.2.135.1066.5.1.4.1.2.1.2 sop
StudyRootRetrieveNKI 1.2.826.0.1.3680043.2.135.1066.5.1.4.1.2.2.2 sop
PatientStudyOnlyRetrieveNKI 1.2.826.0.1.3680043.2.135.1066.5.1.4.1.2.3.2 sop
BasicGrayscalePrintManagementMeta 1.2.840.10008.5.1.1.9 sop
BasicColorPrintManagementMeta 1.2.840.10008.5.1.1.18 sop
BasicFilmSession 1.2.840.10008.5.1.1.1 sop
BasicFilmBox 1.2.840.10008.5.1.1.2 sop
BasicGrayscaleImageBox 1.2.840.10008.5.1.1.4 sop
BasicColorImageBox 1.2.840.10008.5.1.1.4.1 sop
BasicPrinter 1.2.840.10008.5.1.1.16 sop
LittleEndianImplicit 1.2.840.10008.1.2 transfer
#LittleEndianExplicit 1.2.840.10008.1.2.1 transfer
#BigEndianExplicit 1.2.840.10008.1.2.2 transfer
#JPEGBaseLine1 1.2.840.10008.1.2.4.50 transfer LittleEndianExplicit
#JPEGExtended2and4 1.2.840.10008.1.2.4.51 transfer LittleEndianExplicit
#JPEGExtended3and5 1.2.840.10008.1.2.4.52 transfer LittleEndianExplicit
#JPEGSpectralNH6and8 1.2.840.10008.1.2.4.53 transfer LittleEndianExplicit
#JPEGSpectralNH7and9 1.2.840.10008.1.2.4.54 transfer LittleEndianExplicit
#JPEGFulllNH10and12 1.2.840.10008.1.2.4.55 transfer LittleEndianExplicit
#JPEGFulllNH11and13 1.2.840.10008.1.2.4.56 transfer LittleEndianExplicit
#JPEGLosslessNH14 1.2.840.10008.1.2.4.57 transfer LittleEndianExplicit
#JPEGLosslessNH15 1.2.840.10008.1.2.4.58 transfer LittleEndianExplicit
#JPEGExtended16and18 1.2.840.10008.1.2.4.59 transfer LittleEndianExplicit
#JPEGExtended17and19 1.2.840.10008.1.2.4.60 transfer LittleEndianExplicit
#JPEGSpectral20and22 1.2.840.10008.1.2.4.61 transfer LittleEndianExplicit
#JPEGSpectral21and23 1.2.840.10008.1.2.4.62 transfer LittleEndianExplicit
#JPEGFull24and26 1.2.840.10008.1.2.4.63 transfer LittleEndianExplicit
#JPEGFull25and27 1.2.840.10008.1.2.4.64 transfer LittleEndianExplicit
#JPEGLossless28 1.2.840.10008.1.2.4.65 transfer LittleEndianExplicit
#JPEGLossless29 1.2.840.10008.1.2.4.66 transfer LittleEndianExplicit
#JPEGLossless 1.2.840.10008.1.2.4.70 transfer LittleEndianExplicit
#JPEGLS_Lossless 1.2.840.10008.1.2.4.80 transfer LittleEndianExplicit
#JPEGLS_Lossy 1.2.840.10008.1.2.4.81 transfer LittleEndianExplicit
#RLELossless 1.2.840.10008.1.2.5 transfer LittleEndianExplicit
#LittleEndianExplicitDeflated 1.2.840.10008.1.2.1.99 transfer LittleEndianExplicit
#JPEG2000LosslessOnly 1.2.840.10008.1.2.4.90 transfer LittleEndianExplicit
#JPEG2000 1.2.840.10008.1.2.4.91 transfer LittleEndianExplicit

7.6 DICOM print server configuration

No printer configuration options are provided: the default Windows printer is always used. One
must use the default document settings of the default printer to change, e.g., the resolution of
the printout or the paper size. In 1.4.19b header footer and background bitmaps can be

configured through dicom.ini.

7.7 Compression configuration

The compression settings for dropped images, incoming images, and archival are configured in
dicom.ini. These define the compression mode of images stored on disk by the server.

Dropped images DroppedFileCompression Disk,
Remote host IncomingCompression Disk,
Disk ArchiveCompression Archive disk.

The values for these compression settings may be "un" for uncompressed, "as" for as-is (no
change in compression), "n1".."n4" for NKI compression styles, "j1".."j2" for loss-less JPEG
compression, "j3".."j6" for lossy JPEG compression, “js” for lossless JPEGLS, “j7” for lossy
JPEGLS, "jk" for JPEG2000 lossless, "jl" for JPEG2000 lossy, "nj" for NKI or JPEG
compression (chooses highest NKI, but leaves JPEG as is), and k1, k2, k4 and.k8 for
downsizing to 1024..128 pixels.

The original compression type of incoming images (used with "as") is defined by the remote
host, which can choose one of the transfer syntaxes defined in dgatesop.lst.

Since version 1.4.7, if the called AE title in a C-STORE looks like SERVER~xx, then xx will
override IncomingCompression (e.g., images sent to a conquest server addressed from the
remote host as ‘CONQUESTSRV1~k4’ will be downsized by the server to 256 pixels prior to
storage). Note, however, that the total AE may not exceed 16 characters. So this option works
correctly only if the base name of the server (CONQUESTSRV1 in the example) has 13
characters or less.

The compression of forwarded images can be set through dicom.ini as well.

Disk ExportConverterN Remote host.

The type of compression setting is passed using a command "forward compressed as xx to",
where xx is one of the compression types defined for DroppedFileCompression. If the
command "forward to" is used instead, the compression type defined in acrnema.map is used. If
the remote host does not accept the offered compression, images will automatically be sent with
simpler compression or uncompressed. Such negotiation is not implemented for NKI
compression.

Images may also be sent as result of a move request to a remote host using different
compressions. This option is configured per host in acrnema.map.

Disk Setting in acrnema.map Remote host.

The values for these compression settings may be "un" for uncompressed, "n1".."n4" for NKI
compression styles, "j1".."j2" for loss-less JPEG compression, "j3".."j6" for lossy JPEG
compression, "jk" for JPEG2000 lossless, "jl" for JPEG2000 lossy, js for lossless JpegLs, j7 for
lossy JpegLS, and "k1".."k8" for downsizing the image, 'ul' for littleendianexplicit, 'ub' for

bigendianexplicit, and 'ue' for both.

Options "as" and "nj" and “uj” are not correctly implemented for outgoing connections due to
the complexity of the transfer syntax negotiation involved. These options may therefore only be
used for NKI clients or the Conquest DICOM server.

If the remote host does not accept the offered JPEG compression, images will automatically be
sent with a simpler compression or uncompressed. Such negotiation is not implemented for NKI
compression and "k" downsize compression.

Since version 1.4.7, if the called AE title in the C-MOVE looks like SERVER~xx, then xx will
override the compression setting in acrnema.map. (E.g., images sent by a conquest server
addressed from the remote host as ‘CONQUESTSRV1~k4’ will be downsized by the server to
256 pixels prior to sending).

This allows any host/viewer to receive downsized images on request. Note, however, that the
total AE length may not exceed 16 characters. So this option works correctly only if the base
name of the server (CONQUESTSRV1 in the example) has 13 characters or less.

7.8 Worklist configuration

When dropping a HL7 file onto the server, it initiates the command ‘dgate –loadhl7:file’. This
will read the hl7 file and populate the modality worklist database. A sample HL7 file
(sample.hl7) is provided for testing. For translating the hl7 data into the DICOM worklist, an
extra column has been added to the worklist database definition. Typically this column can
contain:

--- No import of values from hl7
*AN Generate a unique 16 character accession number
*UI Generate a unique 64 character UID
SEQ.N Read HL7 sequence seq field N
SEQ.N.M Read HL7 sequence seq field N, subfield M
SEQ.N.DATE Read HL7 sequence seq field N, date part
SEQ.N.TIME Read HL7 sequence seq field N, time part

Hospitals wanting to use HL7 import should edit this table such that the correct HL7 items are
filled in into the worklist database.

When changing the translation part of the worklist database definition, the server must only be
restarted to use the adaptations (enable debug log to view the hl7 translation progress). When
the database layout of the modality worklist is changed, one should clear the database through
the maintenance page and its contents are lost.

Note that database fields marked with ‘DT_STARTSEQUENCE’ and ‘DT_ENDSEQUENCE’
are not used by the program and are descriptive only. The modality worklist query will mimic
the organization of the query in sequences in its reply so the sequence organization needs not be
specified.

Since version 1.4.16, the accessionnumber is no longer the primary index of the worklist
database after it is cleared, allowing more flexibility in filling and using this database.

7.8 Integration with the ZeroBraneStudio IDE for Lua development

Lua scripting provides a wealth of possibilities to configure and extends the functionality of the
Conquest DICOM server. Yet programming such scripts may be daunting. By integration of the
beautiful ZeroBraneStudio IDE, experimenting with scripting or writing scripts for maintenance
tasks becomes much easier. To enable this feature, first download ZeroBraneStudio from
(http://studio.zerobrane.com) or get the latest repository as ZIP file from Github
(https://github.com/pkulchenko/ZeroBraneStudio). Unzip the zip file, the executable
zbstudio.exe is ready to go. Start it. Then to integrate Conquest dicom server, open from the
c:\dicomserver folder the file ZeroBraneStudio\install.lua in ZeroBraneStudio.

Open ZeroBraneStudio and look at the Local console tab
Load this install.lua file with File – Open or drag and drop
Click the [install] link to do finish installation.

After this - ZeroBrane Studio will reopen ready to run demo scripts
and develop for Conquest Dicom Server. As installed, Zerobrane Studio
communicates with a running Conquest Dicom Server and offers code
completion and full debugging facilities. Try for instance to enter a small query script:

a=DicomObject:new()
a.QueryRetrieveLevel='STUDY'
a.StudyInstanceUID=''
a.PatientID=''
a.StudyDate='19980101-19990101'
b=dicomquery('CONQUESTSRV1', 'STUDY', a)
for i=0, #b-1 do
 print(b[i].PatientID, b[i].StudyInstanceUID, '\n')
end

Run it with F5-F5. For a default server, this will print in the 'Output' tab:

Program completed in 0.17 seconds (pid: 5948).
Debugging session started in 'C:\dicomserver\'.
"0009703828" "1.3.46.670589.5.2.10.2156913941.892665384.993397" "\n"
Debugging session completed (traced 0 instructions).

Note that this script is run by the Conquest DICOM server, which has to be up for this script to
work. If you change project - Lua interpreter to Conquest DICOM Utility, a new instance of
dgate.exe will be run to run the script, and the output will be:

Program starting as '"C:\dicomserver\dgate.exe" --dolua:"xpcall(function()
io.stdout:setvbuf('no');
 require('mobdebug').yield=function() if iup then iup.LoopStep() end end;
 require('mobdebug').loop('CF-J10',8172) ;
 package.loaded.mobdebug.done() ;
 package.loaded.mobdebug=nil ;
 collectgarbage('collect') end, function(err) print(debug.traceback(err))
end)"'.
Program 'dgate.exe' started in 'C:\dicomserver' (pid: 5212).
Debugging session started in 'C:\dicomserver\'.
0009703828 1.3.46.670589.5.2.10.2156913941.892665384.993397

file:///../dicomserver
https://github.com/pkulchenko/ZeroBraneStudio

Debugging session completed (traced 0 instructions).
Program completed in 2.49 seconds (pid: 5212).

In the Lua script, all normal Lua functionality is present (the examples delivered with
ZeroBraneStudio are a good starting point to learn Lua), and the following variables and classes
are defined:

Filename Name of dropped file (if any)

command_line command from importconverter e.g.,
“process series by t.lua command”

returnfile If set from lua server command; file
contents are returned to client

Global Server status (counters) and configuration
e.g.:
Global.StartTime
Global.NoDicomCheck

Association Information of current connection
Association.Calling
Association.Called
Association.Thread
Association.ConnectedIP

Command Received command by server
Command.AffectedSOPClassUID
Command.AffectedSOPInstanceUID
Command.CommandField
Command.MessageID
Command.MessageIDBeingRespondedTo
Command.DataSetType
Command.MoveDestination

Command.TransferSyntaxUID
Command.MoveOriginatorApplicationEntityTitle
Command.MoveOriginatorMessageID
Command:Write(filename) write dicom object
Command:Dump(filename) write dicom object header as text file

Data Data object of current DICOM command
(DicomObject)

DicomObject DICOM Object (e.g., image)
DicomObject:new() returns empty DicomObject
DicomObject:newarray() returns empty DicomArray
DicomObject:free () frees DicomObject or DicomArray
Data.Storagestring e.g. MAG0 for importconverters
DicomObject:Script(code) run conquest style script
DicomObject:GetPixel(x, y, fr) get pixel returns 1..N values
DicomObject:SetPixel(x, y, fr, values) set pixel
DicomObject:GetRow(y, frame) get row returning array
DicomObject:SetRow(y, frame, table) set row of pixels
DicomObject:GetColumn(x, fr) get column returns array
DicomObject:SetColumn(x, fr, table) set column of pixels
DicomObject:GetImage(frame) get image as binary string
DicomObject:SetImage(frame, string) set 2D image in dicom object
DicomObject:SetImage(frame,string,scale) set 2D float image object
DicomObject:Read(filename: string) read dicom object

Note: do not use Data:Read
DicomObject:Write(filename: string) write dicom object
DicomObject:Dump(filename: string) write header as text file
DicomObject:GetVR(grp, elmnt, asstring) get vr as byte sequence returns

DicomArray/table/string
DicomObject:SetVR(grp, elmnt, value) set vr from DicomArray/table of

bytes/binary string
DicomObject:AddImage() Enter image into DICOM server
DicomObject:Copy() Returns copy of object
DicomObject:Compress(string) Returns compressed copy object
Data.PatientID Any VR is accessible

DicomArray Dicom sequence = array of DICOM objects
DicomArray:free()
DicomArray[0] all elements (0.. #-1) are DicomObject
:Delete(1) Delete numbered entry

Utility functions

newdicomobject() returns DicomObject
deletedicomobject(DicomObject) free DicomObject
newdicomarray() returns DicomArray

print(...) print arguments to console
debuglog(...) print if debug logging enabled
gpps(section, key, default) Reads DICOM.INI
dictionary(group, element) return dictionary name
dictionary(name) returns dict group, element
get_sqldef(database, field: integer) Reads DICOM.SQL returns

(group, element, FieldName, Length, SQLType, DicomType
system(program: string) run program in the background
destroy() Special for server events
reject() See e.g. script('destroy')
retry()

genuid() Returns new UID
tempfile(extension: string) Returns temp file name
get_amap(entry: int) Reads item from acrnema.map

returns AE, IP, port, compression
dbquery(database, fields, query) Executes SQL query on database

returns table of records from 1 with table of fields from 1
return nil if query fails; {} if query result empty

dicomquery(AE, level, query: DicomObject) returns sequence counting from 0
dicomquery2(AE, level, query: DicomObject) (old) returns sequence from 0
dicommove(AE, dest, query: DicomObject, patientroot:number, callback:string)

move data from DICOM server to
DICOM server

dicomdelete(query: DicomObject) delete data from DICOM server
heapinfo() returns string allocations
sql(statement: string) execute SQL statement
changeuid(olduid[, proposeduid] Consistently modify UID,

returns mapped UID
changeuidback(newuid: string) For a modified UID, returns

original if exists, returns (string or nil)\
addimage(image: userdata) Enter image into server
sleep(N: integer) Sleep for N ms
mkdir(path: string) Make directory (recursive)
ConvertBinaryData(format:string, data:string|table)

convert table to binary string or vice-versa; format e.g.
f8; 1000*f8; 1000*u4, 100*s100

HTML(text: string, …) web server only: output HTML
CGI(key, default) web server only: read url entry

These functions work on variable Data

script(script_code: string) Sends conquest style script to
server, e.g. 'forward to AE'. Special functions are:
script('retry') for RejectedImageWorkListConverter0 and
RejectedImageConverter0; will re-attempt to store the object
after the script is done, script('defer') for
ExportConverter: will cause later retry, and
script('destroy') for query/store or move: will cancel
operation; script('destroy2') will do the same silently

servercommand(command: string, mode:string) Sends conquest server command,
e.g. 'display_status:' or 'get_param:MyACRNema' (string)
mode can 'cgibinary', 'cgihtml' or <filename to upload and
>filename to download

getpixel(x: int, y: int, frame: int) returns pixel values
setpixel(x: int, y: int, frame: int, pixel: int, …) set pixel values
getrow(y: int, frame: int) get row of pixels as

arraysetrow(y: int, frame: int, table) set row of pixels
getcolumn(x: int, frame: int) get column of pixels as array
setcolumn(x: int, frame: int, a: table) set column of pixels
getimage(frame: int) get image as binary string
setimage(frame: int, a: string) set entire image
setimage(frame: int, a: string, scale:float) set short image from floats
getvr(group, element, asstring) get VR as DicomArray/byte

array/binary string from dicom object returns
(DicomArray/table/string of VR values)

setvr(group, element, a) set VR sequence or binary
readdicom(filename) read dicom object
writedicom(filename) write dicom object
writeheader(filename) write header as text file

